
24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

1.6 FUNCTIONS IN C++

Definition

A function in C++ is a named block of reusable code that performs a

specific task. It can be executed whenever needed in a program. Functions help

achieve modularity, reduce repetition, and make programs easier to maintain.

Need for Functions

 Large programs become easier to understand when divided into smaller

modules.

 Code can be reused multiple times without rewriting the same logic.

 Simplifies testing, debugging, and maintenance.

 Enhances teamwork by allowing multiple programmers to work on separate

functions.

1.6.1 Function Declaration (Prototype)

A function declaration tells the compiler about:

 The function name

 Return type

 Parameter list

Syntax:

 return_type function_name(parameter_list);

It prevents errors by ensuring the function is called correctly.

Function Definition

This contains the actual body of the function where the logic is written.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

Syntax:

return_type function_name(parameter_list)

{

 // body of function

}

Function Call

A function is executed using its name followed by parentheses.

Syntax:

 function_name(arguments);

Example Program (Function Declaration, Definition, Call)

#include <iostream.h>

class Calculator

{

 public:

 int add(int a, int b) // Member function

 {

 return a + b;

 }

};

void main()

{

 Calculator c;

 int result = c.add(10, 20); // Function call through object

 cout << "Sum = " << result;

}

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

Output:

 30

Advantages

 Makes the program modular and easy to understand.

 Avoids repetition of code.

 Easy debugging and testing.

 Enhances reusability because the same function can be used anywhere.

 Facilitates teamwork by dividing the program into tasks.

Disadvantages

 Too many small functions may reduce program efficiency.

 Passing large data by value increases memory usage.

 Program flow becomes harder to trace with many function calls.

 Overuse of functions may fragment the logic.

Example

#include <iostream.h>

class Multiply

{

 public:

 int multiply(int a, int b) // Member function

 {

 return a * b;

 }

};

void main()

{

 Multiply m; // Object name starts with 'M' → m

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

 cout << "Product = " << m.multiply(4, 5);

}

1.6.3 Function Overloading

Function overloading allows multiple functions with the same name but

with different parameter lists (type or number of parameters).

Syntax

 return_type function_name(type1);

 return_type function_name(type1, type2);

Example

#include <iostream.h>

class Addition

{

 public:

 int add(int a) // Function with one argument

 {

 return a + 0;

 }

 int add(int a, int b) // Function with two arguments

 {

 return a + b;

 }

};

void main()

{

 Addition A1; // Object creation

 cout << "Sum (two numbers) = " << A1.add(4, 5) << endl;

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

 cout << "Sum (one number) = " << A1.add(6);

}

1.6.4 Inline Functions

An inline function in C++ is a function whose function call is replaced by

the actual function code at compile time, thereby reducing function-call

overhead and improving execution speed.

The inline keyword suggests the compiler to expand the function code at

the point of call, which is especially useful for small and frequently used

functions.

Inlining is only a request, not a command; the compiler may choose or ignore it.

The compiler may ignore the inline request if the function:

 Contains loops

 Uses recursion

 Contains static variables

 Uses switch or goto statements

 Is a non-void function without a return statement

Syntax

inline return_type function_name(parameter_list)

{

 // body

}

Example

#include <iostream.h>

class Addition

{

public:

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

 inline int add(int a, int b) // Inline member function

 {

 return a + b;

 }

};

void main()

{

 Addition A1; // Object name starts with
'A' → A1

 cout << "Addition = " << A1.add(10,20);

}

Advantages:

 Faster execution (no function call overhead).

 Useful for small, frequently called functions.

Disadvantages:

 Increases program size if used excessively.

 Not suitable for large functions or those with loops and recursion.

1.6.5 Default Arguments

Default arguments allow a function to assign default values to parameters

if no value is provided during the function call.

Syntax

 return_type function_name(int x, int y = 10);

Example

#include <iostream>

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

class Addition

{

public:

 int add(int a, int b = 5) // Default argument

 {

 return a + b;

 }

};

void main()

{

 Addition a; // Object name starts with 'A' → a

 cout << a.add(10) << endl; // Uses default b = 5

 cout << a.add(10, 20); // Overrides default

}

Advantages

 Flexibility in calling functions.

 Reduces the number of overloaded functions needed.

Disadvantages

 Can cause confusion when too many defaults are used.

 Order of parameters becomes important.

