Electric flux density:

The flux due to the electric field 'E' can be calculated by using the definition of the flux.

According to eqn
$$E = \frac{Q}{4\pi\varepsilon_0 R^2} aR$$

the electric field intensity is dependent on the medium in which the charge is place.

New vector D is defined by

The electric flux Ψ in terms of D,

$$\Psi = \int_{S} D. ds \qquad \dots (2)$$

 $D \rightarrow electric flux density \rightarrow c/m^2$

 $x \rightarrow measured in coloumb's$

Electric flux density is also called electric displacement

Example: For an infinite sheet of charge

For a volume charge distribution

$$a = \int_{v} \rho_{v \, dv}$$

From eqn (4) & (5) 'D' is a function of charge & position only it is independent of medium

Gauss's law - Maxwell's equation

Gauss's law states that the total electric flux Ψ through any closed surface is equal to the total charge enclosed by that surface.

$$\Psi = Q \text{ enc}$$
(1)
ie $\Psi = \oint d\Psi = \oint D. ds$

total charge enclosed $Q = \int_{v} \rho_{v} dv$

$$Q = \oint D. ds = \int_{v} \rho_{v} dv \dots (2)$$

By applying divergence theorem

$$\oint D. ds = \int_{v} \nabla. D dv \qquad \dots (3)$$

Compare the two volume integrals in eqn (2) & (3)

$$\rho_{v} = \nabla . D \qquad \dots (4)$$

The above equation is a Maxwell first equation. The equation states that volume charge density is same as the divergence of electric flux density

 ρ_v at any point – charge per unit volume at that point.

Note:

- ➤ Equation (A) & (4) state Gauss's law in different ways eqn (A) is the integral form
 - Eqn (4) is the differential (or) point form of Gauss's law
- ➤ Gauss's law is an alternative statement of Coulomb's law. Proper application of divergence theorem to Coulomb's law results Gauss's Law.
- ➤ By using Gauss's law E (or) D for symmetrical charge distributions such as point charge an infinite line charge an infinite cylindrical surface charge and a spherical distribution of charge.
- \triangleright Rectangular symmetry depends on x (or y or z)
- \triangleright Cylindrical symmetry depends on ρ
- \triangleright Spherical symmetry depends on r (independent of $\theta \& \varphi$)

Gauss's law cannot be used to determine E (or) D. When the charge distribution is not symmetric.

Applications of Gauss's law:

- ➤ Gauss's law is used to calculate the electric field whether symmetry exists
- > Surface of D is chosen such that D is normal or tangential to the Gaussian surface.

D is normal to the surface

$$D.ds = Dds$$

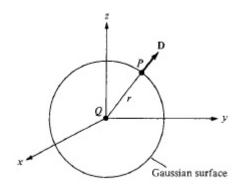
D is tangential to the surface

$$D.ds = 0$$

Point charge:

A point charge Q is located at the origin. To determine D at point p. Here spherical surface containing 'p' satisfy the symmetry conditions is used.

Spherical surface centered at the origin is the Gaussian surface



Gaussian Surface

Fig25. Gaussian surface about a point charge

D is normal to the Gaussian surface

$$D = D_r.a_r \qquad \dots (1)$$

Gauss's law

$$Q = \oint_{S} D. \ ds \quad \dots \qquad (2)$$

$$Q = \oint_{\mathcal{S}} D_r. \ ds = D_r 4\pi r^2 \qquad \dots (3)$$

$$\oint_{\mathcal{S}} ds = 4\pi r^2 = \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin\theta \ d\theta \ d\varphi$$

$$D_r = D = \frac{Q}{4\pi r^2} ar \qquad \dots \tag{4}$$

Infinite line charge:

Infinite line of uniform charge ρ_L c/m along z- axis. To determine D at point p

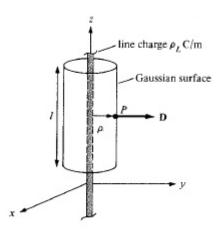


Fig26. Gaussian surface about an infinite line charge

The electric flux density 'D' is constant on and normal to the cylindrical Gaussian surface

$$D = D_{\rho} a_{\rho}$$

Apply Gauss's law to an arbitrary length l of the line.

$$\rho_l L = Q = \oint_s D. ds = D_\rho \oint_s ds$$
$$= D_\rho 2\pi \rho l$$

 $\oint_{S} ds = 2\pi\rho l \rightarrow \text{Surface area of the Gaussian surface.}$

In the top & bottom of the surface 'D' is tangential to the Gaussian surface.

$$\oint_{S} D \cdot ds = 0, \quad D_{\rho} = D = \frac{Q \rho_{L} l}{2\pi \rho l} = \frac{\rho_{L}}{2\pi \rho} a_{\rho}$$

Infinite sheet of charge:

Infinite sheet of uniform charge ρ_s c/m^2 lying on the z=0 plane. To determine 'D' at point. 'P'

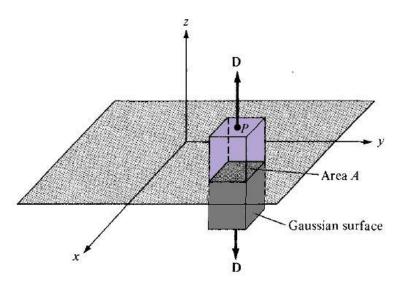


Fig6. Gaussian surface about an infinite sheet of charge

D is normal to the sheet

$$D = D_z . a_z$$

Apply Gauss's law

$$\rho_s \oint_s ds = Q = \oint D. ds$$

$$= D_z \left[\int_{top} ds + \int_{bottom} ds \right]$$

'D' has no x & y components. The surface area of the box is 'A'.

$$\rho_s \cdot A = D_z [A + A]$$

$$D_z = D = \frac{\rho_s}{2} a_z \text{ (or)}$$

$$E = \frac{D}{\varepsilon_0} = \frac{\rho_S}{2\varepsilon_0} a_Z$$

Uniformly charged sphere:

Consider a sphere of radius 'a' with a uniform charge $\rho_o \, c/m^3$. To determine D everywhere construct Gaussian surface for $r \le a \, \& \, r \ge a$. Separately

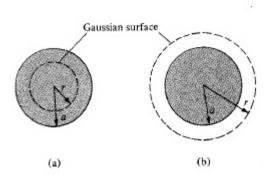


Fig27. Gaussian surface for a uniformly charged sphere a) $r \le a$ b) $r \ge a$ For $r \le a$. The total charge enclosed by the sphere of radius r is

$$Q_{enc} = \int_{v} \rho_{v} dv = \rho_{v} \int_{v}^{r} dv = \rho_{v} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{r} r^{2} \sin \theta dr d\theta d\phi$$

$$Q_{enc} = \rho_{v} \frac{4\pi}{3} r^{3} \qquad(1)$$

and

$$\Psi = \oint_{S} D. dS = \oint_{S} D_{r}. dS$$

$$= D_{r} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} r^{2} \sin \theta \ d\theta \ d\varphi$$

$$= D_{r} 4\pi r^{2} \qquad \dots \qquad (2)$$

Hence
$$\Psi = Q_{enc}$$

Equate (1) & (2)

$$D_r 4\pi r^2 = \frac{4\pi}{3} r^3 \rho_v$$

$$D_r = D = \frac{r}{3}\rho_v \, dr \qquad 0 < r \le a$$

For $r \ge a$ The charge enclosed by the surface is

$$Q_{enc} = \int_{v} \rho_{v} \, dv = \rho_{v} \int_{v}^{r} dv = \rho_{v} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{r} r^{2} \sin \theta \, dr \, d\theta \, d\varphi$$

$$Q_{enc} = \rho_{v} \frac{4\pi}{3} \alpha^{3}$$
(3)

while

$$\Psi = \oint_{S} D. ds = D_r \oint_{S} ds$$

$$= D_r 4\pi r^2 \qquad \dots \tag{4}$$

Equate (3) & (4)

$$D_r 4\pi r^2 = \frac{4\pi}{3}a^3\rho_v$$

$$D_r = \frac{a^3}{3r^2} \rho_v \, dr \, \dots (5)$$

$$D = \frac{r}{3}\rho_v a_r \qquad 0 \le r \le a$$

$$D = \frac{a^3}{3r^2} \rho_v a_r \qquad r \ge a$$

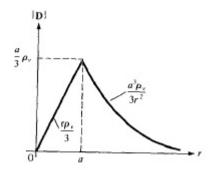


Fig28. Sketch of |D| against r for uniformly charged sphere