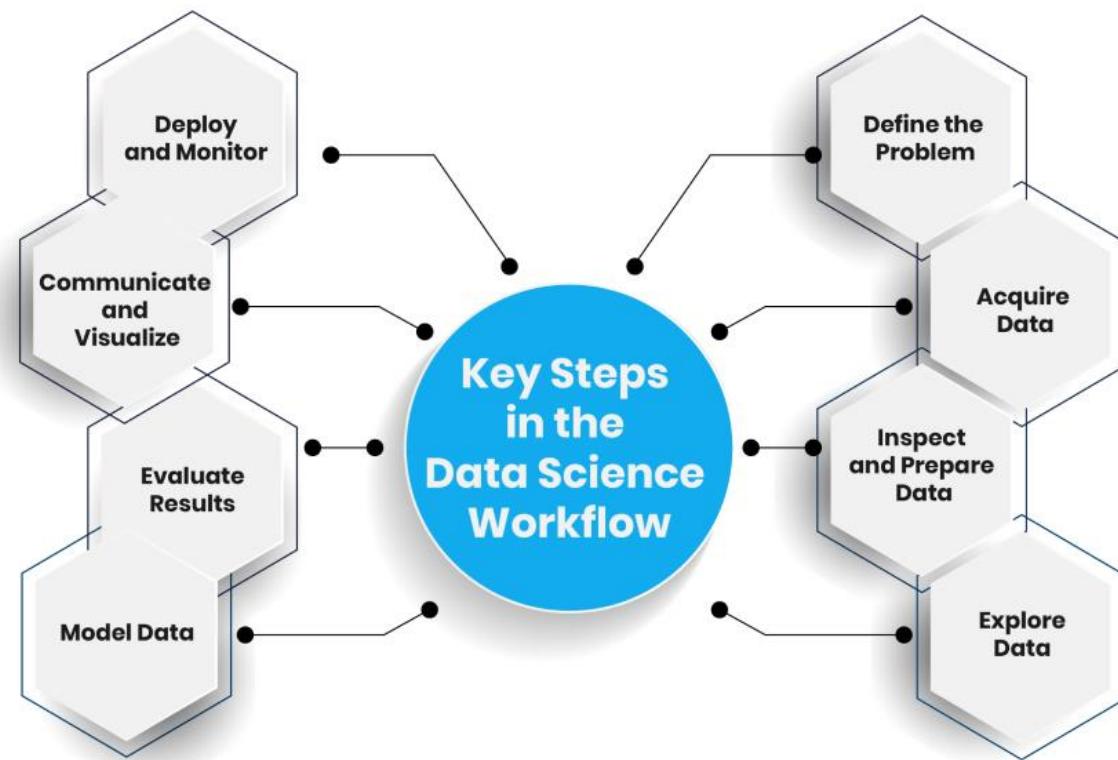


1.1 Role of algorithms in data science workflows


Algorithms are the core engines of data science, acting as step-by-step instructions to process raw data, discover hidden patterns, build predictive models (like regression, clustering), automate decisions, and transform complex information into actionable business insights for tasks ranging from fraud detection to medical image analysis

Algorithms are widely used in various industrial areas to improve efficiency, accuracy, and decision-making. Some of the key applications include:

1. Manufacturing: Algorithms are used to optimize production processes and supply chain management, reducing waste and increasing efficiency.
2. Finance: Algorithms are used to analyze financial data and make predictions, enabling traders and investors to make informed decisions.
3. Healthcare: Algorithms are used to process and analyze medical images, assist in diagnosing diseases, and optimize treatment plans.
4. Retail: Algorithms are used for customer relationship management, personalized product recommendations, and pricing optimization.
5. Transportation: Algorithms are used to optimize routes for delivery and transportation, reducing fuel consumption and increasing delivery speed.
6. Energy: Algorithms are used to optimize energy generation, distribution, and consumption, reducing waste and increasing efficiency.
7. Security: Algorithms are used to detect and prevent security threats, such as hacking, fraud, and cyber-attacks.

1. **Problem Definition:** Understand the business goal or question to be answered (e.g., predict churn, segment customers).
2. **Data Acquisition/Collection:** Gather relevant data from various sources (databases, APIs, files).
3. **Data Preparation/Cleaning:** Handle missing values, outliers, errors, and transform data into a usable format (e.g., encoding, scaling).
4. **Exploratory Data Analysis (EDA):** Analyze and visualize data to uncover patterns, trends, and relationships, informing model choices.
5. **Feature Engineering:** Create new, relevant features from existing data to improve model performance.

6. **Model Building & Training:** Select and train appropriate algorithms (e.g., regression, classification) on the prepared data.
7. **Model Evaluation:** Assess model performance using metrics (accuracy, precision, etc.) and validate against unseen data.
8. **Model Tuning:** Iterate on model parameters or try different algorithms if initial results aren't satisfactory.
9. **Deployment:** Integrate the final, validated model into a production environment for real-world use.
10. **Monitoring & Maintenance:** Continuously track model performance and retrain as needed to maintain accuracy over time.
11. **Communication:** Present findings, insights, and recommendations using visualizations (dashboards, reports) for decision-makers.

