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24 FIRST AND SECOND ORDER SYSTEM RESPONSE
Transfer Function
e It is the ratio of Laplace transform of output to Laplace transform of input with
zero initial conditions.
e One of the types of modeling a system
e Using first principle, differential equation is obtained
o Laplace Transform is applied to the equation assuming zero initial conditions
Order of a system
v" Order of a system is given by the order of the differential equation governing the
system
v' Alternatively, order can be obtained from the transfer function
v" In the transfer function, the maximum power of s in the denominator polynomial
gives the order of the system
Dynamic Order of Systems
= Order of the system is the order of the differential equation that governs the
dynamic behaviour
= Working interpretation: Number of the dynamic elements / capacitances or holdup
elements between a manipulated variable and a controlled variable
= Higher order system responses are usually very difficult to resolve from one
another
= The response generally becomes sluggish as the order increases
SYSTEM RESPONSE
First-order system time response
] Transient
] Steady-state
Second-order system time response
[J Transient

] Steady-state
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FIRST ORDER SYSTEM

Response of First Order System for Unit Step Input

The standard form of closed loop transfer function of first order system is
Cs) 1
R(s) 1+4sT

If the input is unit step, then r(t) and R(s)=1/s

1 1
= = —X
C(s) = R(s) 1+sT s 1+4sT

Applying partial fraction expansion,

C()—A+ <
S s 1+4sT
On solving,
c(s) 1 1
§)=——
S 1
S+T

On taking inverse Laplace transform, the response in time domain is obtained as,
t
c(t)=1—eT
Hence, the input and output signal of the first order system is given by,

r(t) 4 o(t) A
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Figure 2.4.1 Response of first order system to unit step input

[Source: “Control Systems” by Nagoor Kani, Page: 2.20]
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SECOND ORDER SYSTEM

LTI second-order system

R(s) + 6, C(s)
* s(s + 26w,,)

Figure 2.4.2 Closed loop for second order system

[Source: “Control Systems” by Nagoor Kani, Page: 2.20]

C(s)  G(s)
R(s) 1+4+G(s)

Wy
C(s) _ (S(S + wan> = wy,
R(s) w2 524 20w,S + w?
1+ (s 37a,)

where, ¢ is the damping ratio, w, is the natural frequency
DAMPING RATIO
It is the ratio of critical damping to actual damping.
CHARACTERISTIC EQUATION
s2+ 2{w,s + w2 =0
s=—(w, + wn\/ﬁ
The roots of characteristic equation are:
[1 The two roots are imaginary when { = 0 (undamped system)
[J The two roots are real and equal when ¢ = 1 (critically damped system)
[1 The two roots are real but not equal when ¢ > 1 (overdamped system)

[J The two roots are complex conjugate when 0 < ¢ < 1 (underdamped system)

CONTROL SYSTEMS



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

Response of Second Order System for Unit Step Input

Consider the unit step signal as an input to the second order system. Laplace transform

of the unit step signal is

R(s) =1/s
Transfer function of the second order closed loop transfer function is
C(s) _ Wy

R(s) 52+ 2{w,s + w2
Case 1: Undamped system
When ¢ = 0,

C(s) w;
R(s) s2+ w?

For unit step input, R(s) = 1/s,
2

c(s)| AR (1) @n

s2+w2\s) s(s?+ w?)

Taking inverse Laplace transform,
c(t) =1—cosw,t

T(T)jh - clt)4

Figure 2.4.3 Response of undamped second order system to unit step input
[Source: “Control Systems” by Nagoor Kani, Page: 2.22]
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Case 2: Underdamped system
When 0 < { <1,
C(s) _ Wy
R(s) 5?2+ 2{w,s+ w?
s2 + 2{w,s + w2 = {s? + 2{w,s + ((w,)?*} + w2 — ({w,)?
= (s +{wp)? + w(1 - 7%
C(s) _ Wy
R(s) (s+{wn)?+wi(1-7?%)
For unit step input, R(s)=1/s,

wn
s((s + Swn)? + w}(1 - §?))

C(s) =

By applying partial fraction,
Bs + C
(G +Swp)? + wi(1 - ¢2))

A
C(S) =;+

On solving, we get,
s+ 2¢w,
(s +¢wp)? + w2 (1 - ¢?))
cis) =2 s + {wn - {wn
s (+Tw)?+wi(1-02)) ((s+iwn)?+wi(1-72)

1
C(S) =§—

coy Lo 5+ {wn _ {on

((s + {w,)? + (wn,/l — 52)2> ((s + (wy)? + (wm/l — 52)2>

s+ {w,
(G5 + ¢ony? + (o T=C2))
¢ w1 =2
V1= (54 q0? + (0 T=32) )

On taking inverse Laplace transform,

1
C(s) =——
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e—{wnt

c(t)=(1- \/1?(2((\/1 — (2) cos wyt + ¢ sin a)dt)

We know, sinf = /1 —{?%,cos 0 = {

—{wnt
c(t) = 1———=(sinf cosw, t + cos O sinw,t)
J1-22
e—(wnt
c(t) =| 1 — ———=(sin(wyt + 6))
J1-22
r(t) & | c(t) 4
|
.
0 t \ t

Figure 2.4.4 Response of underdamped second order system to unit step input

[Source: “Control Systems” by Nagoor Kani, Page: 2.24]
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Case 3: Critically damped system

When ¢ =1,
C(s) Wy
R(s) 5?2+ 2{w,s+ w?
C(s) _ Wy
R(s) s?242w,s+ w?
C(s) w;

R(s) (s+ w,)?
For a step input, R(s)=1/s

2

s(s + wy,)?
By applying partial fractions,
C(s) = £ + 2 gle /
s st+w, 5+ w,)?

On solving, we get

1 Wy,
stw, (+w,)?

1
C(S) =§—

By taking inverse Laplace transform,
c(t)=1—e @nt — @, te @nt

r(t) & c(t) 4
1 Yo o - g s

0

-y

0

Figure 2.4.5 Response of critically damped second order system to unit step input
[Source: “Control Systems” by Nagoor Kani, Page: 2.25]
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Case 4: Overdamped system
When ¢ > 1,

C(s) _ Wy
R(s) 524 20{w,s + w?

2+ 20wys + w2 = {s? + 2{w,s + w + (*wi — (*w?}
= (s +{wp)? — wp(* — 1)
C(s) _ Wy
R(s) (s+{wn)? - wi((®>—-1)
For unit step input, R(s)=1/s,

wn
[(s + {wp)? — wi($? = 1)]

wn

s(s + {w, + wnm)(s + (wy, — wn\/?@)

By applying partial fraction,

C(s) = S

C(s) =

A B C
C(s) =—+ -+

S (s+ o+ onT=02) (54w — 01— 32)

By applying inverse Laplace transform,

_ 1 ~(¢wn+an/T2-1)t
S 2(¢ +/77=1)(ViZ-1) ’
y 1 e—((wn—wn\/iz——l)t

r(t) &

0 t

Figure 2.4.6 Response of over damped second order system to unit step input

[Source: “Control Systems” by Nagoor Kani, Page: 2.27]
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