MongoDB CRUD Operations

CRUD operations are essential for interacting with databases. In MongoDB, CRUD
operations allow users to perform various actions like inserting new documents, reading data,
updating records and deleting documents from collections.

o Create: Add new documents to a collection.

o Read: Retrieve documents from a collection.

o Update: Modify existing documents.

o Delete: Remove documents from a collection.

C > Create
R » Read

U » Update
D » Delete

1. Create Operations

The create or insert operations are used to insert or add new documents in the collection. If a
collection does not exist, then it will create a new collection in the database. We can perform,
create operations using the following methods provided by the MongoDB:

Method Description
db.collection.insertOne() It is used to insert a single document in the collection.
db.collection.insertMany() It is used to insert multiple documents in the collection.

db.createCollection() It is used to create an empty collection.

Create Operations Example

Let's look at some examples of the Create operation from CRUD in MongoDB.

Example 1:

In this example, we are inserting details of a single student in the form of document in the
student collection using db.collection.insertOne() method.

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb-insertone-method-db-collection-insertone/

> use GeeksforGeeks

anki — mongo — 80x55

switched to db GeeksforGeeks

> db.student.insertOne(
.. hame : "Sumit",
. age : 20,
. branch : "CSE",
. course : "C++ STL",
.. mode : "online",
. paid : true,
. amount : 1499
. 1)

"acknowledged"
"insertedId"
}
> 11

Example 2:

{

: true,

: ObjectId("5e540cdc92e6dfa3fc48ddae")

In this example, we are inserting details of the multiple students in the form of documents in

the student
[JON |

[> use GeeksforGeeks
switched to db GeeksforGeeks
> db.student.insertMany ([

vex 1

... name : "Sumit",

... age : 20,

... branch : "CSE",

... course : "C++ STL",

... mode : "online",

... paid : true,

... amount : 1499

v s

vax T

... hame : "Rohit",

... age : 21,

... branch : "CSE",

... course : "C++ STL",

... mode : "online",

... paid : true,

... amount : 1499

vaE X

[sss 1)

{
"acknowledged" : tru
"insertedIds" : [

ObjectId("5e
ObjectId("5e

i)

}

> 1

2. Read Operations

collection using db.collection.insertMany()

method.

;7 anki — mongo — 80x55

e,

540d3192e6dfal3fcs8ddaf"),
540d3192e6dfa3fc48ddbo")

The Read operations are used to retrieve documents from the collection, or in other words,
read operations are used to query a collection for a document. We can perform read operation
using the following method provided by the MongoDB:

Method

db.collection.find()

Description

It is used to retrieve documents from the collection.

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb-insertmany-method-db-collection-insertmany/

Method Description

db.collection.findOne() Retrieves a single document that matches the query criteria.

Note: pretty() method is used to decorate the result such that it is easy to read.

Read Operations Example

In this example, we are retrieving the details of students from the student collection

using db.collection.find() method.

3. Update Operations

The update operations are used to update or modify the existing document in the collection.
We can update a single document or multiple documents that match a given query. We can
perform update operations using the following methods provided by the MongoDB:

Method Description

It is used to update a single document in the collection

db.collection.updateOne() that satisfy the given criteria.

It is used to update multiple documents in the collection

db.collection.updateMany() that satisfy the given criteria.

It is used to replace single document in the collection that

db.collection.replaceOne() satisfy the given criteria.

Update Operations Example
Let's look at some examples of the update operation from CRUD in MongoDB.
Example 1:

[NON) anki — mongo — 80x55

> use GeeksforGeeks
switched to db GeeksforGeeks
[> db.student.find().pretty()
{
"_id" : ObjectId("5e540cdc92eédfa3fc48ddae"),
"name" : "Sumit",
"age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

"_id" : ObjectId("5e540d3192e6dfa3fc48ddaf"),
"name" : "Sumit",

"age" : 20,

"branch" : "CSE"

"course" : "C++ STL"

"mode" : "online",

"paid" : true,

"amount" : 1499

"_id" : ObjectId("5e540d3192e6dfa3fc48ddhe"),
"name" : "Rohit",

"age" : 21,

"branch" : "CSE",

"course" : "C++ STL"

"mode" : "online",

"paid" : true,

"amount" : 1499

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb-db-collection-find-method/

In this example, we are updating the age of Sumit in the student collection

using db.collection.updateOne() method.
@0 e anki — mongo — 80x43

> use GeeksforGeeks

switched to db GeeksforGeeks

> db.student.updateOne({name: "Sumit"},{$set:{age: 24 }})

{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount" : @ }
> db.student.find().pretty()

{
"_id" : ObjectId("5e540cdc92eé6dfa3fc4s8ddae"),
"name" : "Sumit",
"age" : 24,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

{
"_id" : ObjectId("5e540d3192e6dfa3fc4s8ddaf"),
"name" : "Sumit",
“age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

{
"_id" : ObjectId("5e540d3192e6dfa3fc48ddbe"),
"name" : "Rohit",
"age" : 21,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

> 1

Example 2:

In this example, we are updating the year of course in all the documents in the student

collection using db.collection.updateMany() method.

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb-updateone-method-db-collection-updateone/
https://www.geeksforgeeks.org/mongodb-updatemany-method-db-collection-updatemany/

| NON anki — mongo — 80x43

> use GeeksforGeeks

switched to db GeeksforGeeks

> db.student.updateMany({}, {$set: {year: 2020}})

{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 3 }
> db.student.find().pretty()

{
"_id" : ObjectId("5e540cdc92eé6dfa3fcs8ddae"),
"name" : "Sumit",
"age" : 24,
“branch" : “CSE"Y,
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e540d3192e6dfa3fcs8ddaf"),
"name" : "Sumit",
"age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e540d3192e6dfa3fc48ddbe"),
"name" : "Rohit",
"age" : 21,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

> 1

4. Delete Operations

The delete operation are used to delete or remove the documents from a collection. We can
delete documents based on specific criteria or remove all documents. We can perform delete
operations using the following methods provided by the MongoDB:

Method Description

It is used to delete a single document from the collection

db.collection.deleteOne() that satisfy the given criteria.

It is used to delete multiple documents from the collection

db.collection.deleteMany() that satisfy the given criteria.

Delete Operations Examples
Let's look at some examples of delete operation from CRUD in MongoDB.
Example 1:

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

In this example, we are deleting a document from the student collection
using db.collection.deleteOne() method.

> use GeeksforGeeks
switched to db GeeksforGeeks
> db.student.find().pretty()

{
"_id" : ObjectId("5e540cdc92e6dfa3fc48ddae"),
"name" : "Sumit",
"age" : 24,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e540d3192eédfa3fc4s8ddaf"),
"name" : "Sumit",
"age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e54103592e6dfa3fc48ddbli"),
"name" : "Rohit",
"age" : 21,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

> db.student.deleteOne({name: "Sumit"})
{ "acknowledged" : true, "deletedCount" : 1 }
> db.student.find().pretty()

{
"_id" : ObjectId("5e540d3192eédfa3fc4s8ddaf"),
"name" : "Sumit",
"age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e54103592e6dfa3fc48ddbli"),
"name" : "Rohit",
"age" : 21,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

Example 2:

In this example, we are deleting all the documents from the student collection
using db.collection.deleteMany() method.

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb-db-collection-deleteone/
https://www.geeksforgeeks.org/mongodb-delete-multiple-documents-using-mongoshell/

® anki — mongo — 80x56

> use GeeksforGeeks
switched to db GeeksforGeeks
> db.student.find().pretty()
{
"_id" : ObjectId("5e540d3192eé6dfal3fc48ddaf"),

"name" : "Sumit",
"age" : 20,

"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,

"amount" : 1499,
"year" : 2020

}

{
"_id" : ObjectId("5e54103592e6dfa3fc48ddbl"),
"name" : "Rohit",
"age" : 21,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

> db.student.deleteMany({})
{ {acknowledged“ : true, "deletedCount" : 2 }
> =

Indexing in MongoDB

Indexing in MongoDB is a crucial feature that enhances query processing efficiency.
Without indexing, MongoDB must scan every document in a collection to retrieve
the matching documents and leading to slower query performance.

Indexes are special data structures that store information about the documents in a way that
makes it easier for MongoDB to quickly locate the right data.

What is Indexing in MongoDB?

Indexing in MongoDB is a technique that improves the speed and efficiency of queries. An
index is a special data structure that stores a subset of data in a way that allows MongoDB to
quickly locate documents in a collection. When an index is applied, MongoDB doesn't have
to scan the entire collection for the query results but instead uses the index to directly find
the relevant data.

Indexes in MongoDB are ordered by the value of the field that the index is created on. This
ordered structure enables faster searching, sorting, and filtering operations. Indexes also help
to improve query performance when using conditions, sorting, and aggregation

Why is Indexing Important in MongoDB?

MongoDB provides a method called createlndex() that allows users to create an index. The
key determines the field on the basis of which we want to create an index and 1 (or -1)
determines the order in which these indexes will be arranged(ascending or descending).
Indexing improves the performance of:

e Find queries (db.collection.find()).

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb/mongodb-db-collection-createindex-method/

e Range queries (e.g., queries with <, >, <=, >= operators).

e Sorting (e.g., db.collection.find().sort()).

e Aggregation operations involving filtering, grouping, and sorting.
Syntax:

db.COLLECTION_NAME.createlndex({KEY:1

How to Create an Index in MongoDB

To create an index, MongoDB provides the createlndex() method. The method requires us to
specify the field(s) to index and the order (ascending or descending). We can also specify
optional parameters to customize the index creation.

Syntax

db.collection.createlndex({ <field>: <1 or -1> });

Example

db.users.createlndex({ username: 1 });

Parameters:

e unique: Ensures the indexed field contains unique values.

e background: Creates the index in the background to avoid blocking other database
operations.

e sparse: Only indexes documents that contain the indexed field.

o expireAfterSeconds: Used for time-to-live (TTL) indexes to automatically remove
documents after a certain time.

o hidden: Marks the index as hidden, meaning it will not be used for queries but still
exists in the system.

How to Drop an Index in MongoDB

We can drop an index using the dropindex() method. To drop multiple indexes,

use droplndexes(). The droplndex() methods can only delete one index at a time. In order to

delete (or drop) multiple indexes from the collection, MongoDB provides the dropIndexes()

method that takes multiple indexes as its parameters.

Syntax (drop a single index):

db.NAME_OF_COLLECTION.dropIndex({KEY:1

Syntax (drop multiple indexes):
db.NAME_OF_COLLECTION.dropindexes({KEY1:1, KEY2: 1})

The dropIndex() methods can only delete one index at a time. In order to delete (or drop)
multiple indexes from the collection, MongoDB provides the droplndexes() method that
takes multiple indexes as its parameters.

How to View all Indexes in MongoDB

The getindexes() method in MongoDB gives a description of all the indexes that exists in the
given collection.

Syntax

db.NAME_OF_COLLECTION.getIndexes()

It will retrieve all the description of the indexes created within the collection.

24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS

https://www.geeksforgeeks.org/mongodb/mongodb-getindexes-method/

	MongoDB CRUD Operations
	1. Create Operations
	Create Operations Example

	2. Read Operations
	Read Operations Example

	3. Update Operations
	Update Operations Example

	4. Delete Operations
	Delete Operations Examples

	Indexing in MongoDB
	What is Indexing in MongoDB?
	Why is Indexing Important in MongoDB?
	How to Create an Index in MongoDB
	Syntax

	How to Drop an Index in MongoDB
	How to View all Indexes in MongoDB

