4.4 RESOURCE LIMITS AND PROCESS ISOLATION
4.4.1. Introduction

Modern computing systems run multiple applications on shared physical
hardware, especially in cloud environments, data centers, and enterprise servers. To
ensure that these applications run efficiently, securely, and without interference,
technologies such as virtualization and containerization make use of two
fundamental concepts: resource limits and process isolation. Resource limits
define how much CPU power, memory, disk 1/O, or network bandwidth a workload
is allowed to use. Without these limits, a single application can consume excessive
resources, causing performance degradation or system instability.

Process isolation ensures that applications are separated from one another,
preventing one application’s actions from affecting others. This is extremely
important for security, stability, and multi-tenant computing. Virtualization provides
isolation at the hardware level using hypervisors and separate operating systems,
while container technologies provide lightweight isolation using the Linux kernel.
Together, resource limits and process isolation form the foundation of efficient

multi-application environments.
4.4.2. Virtualization Technologies

Virtualization creates multiple Virtual Machines (VMs) on a single physical
server. Each VM behaves like a complete computer with its own operating system,
kernel, virtual hardware, and applications. This is achieved through a software layer
called the hypervisor.

4.4.2.1 Hypervisors

Hypervisors are classified into two types:

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

« Type-1 Hypervisors (Bare-metal): Installed directly on physical hardware.
Examples: VMware ESXi, Microsoft Hyper-V, Xen.

« Type-2 Hypervisors (Hosted): Installed on top of a host operating system.
Examples: VMware Workstation, VirtualBox.

These hypervisors divide hardware resources such as CPU cores, RAM, storage, and

network bandwidth into isolated virtual environments.
4.4.2.2 Process Isolation in Virtualization

Virtualization provides strong isolation because each VM runs a separate OS
kernel and has independent virtual hardware. A failure or attack inside one VM
cannot directly affect another.

Isolation is achieved through the following mechanisms:

Mechanisms of Isolation

Virtual CPUs (vCPUs): Each VM is assigned a specific number of vCPUs

that map to physical CPU cores.

« Memory Virtualization: Uses hardware support like Extended Page Tables
(Intel EPT) or Nested Page Tables (AMD NPT) to isolate RAM usage.

. Storage and I/O Virtualization: Each VM is given virtual disks, virtual
network interfaces, and virtual storage devices.

« Hypervisor Scheduling: The hypervisor decides when and how long each VM

can use CPU or 1/O resources.

Benefits

« Very strong security boundaries
« Complete fault isolation

« Ability to run different operating systems (Linux & Windows together)

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

Limitations

« High resource overhead
« Slower startup time
« Requires full OS per VM

4.4.2.3 Resource Limits in Virtualization
Hypervisors enforce limits to ensure fairness and predictable performance.
CPU Limits

o CPU Shares: Assigns priority among VMs.

« CPU Reservation: Guarantees minimum CPU availability.

« CPU Cap: Limits maximum CPU usage.

« VCPU Pinning: Maps VM CPUs to particular physical cores.

Memory Limits

. Static Allocation: Fixed memory assigned to a VM.

« Memory Ballooning: Dynamically adjusts memory under load.

« Memory Reservation: Guarantees a minimum amount.

« Memory Overcommit: Allows VMs to request more memory than physically
available (handled carefully).

Storage 1/0 Limits

« Restriction on 1OPS (Input/Output Operations Per Second)
. Bandwidth caps
« Quality of Service (QoS) policies

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

Network Limits

. Traffic shaping
. Rate limiting

« Assigning priority queues

These features prevent one VM from consuming all resources, ensuring stable multi-

tenant performance.
4.4.3. Container Technologies

Containerization offers a lightweight alternative to virtualization. Instead of running
a full OS for each workload, containers share the host OS kernel but use isolation
techniques to Create separate environments.

Examples: Docker, Kubernetes, LXC, Podman.

Containers are widely used for microservices, DevOps automation, and cloud-native

applications due to their speed and low overhead.

4.4.3.1 Process Isolation in Containers

Containers rely on Linux Namespaces to isolate system resources.
Types of Namespaces

« PID Namespace: Isolates process IDs; each container sees only its processes.
« Mount Namespace: Provides separate filesystem views.

« Network Namespace: Each container has its own IP address and routing.

« IPC Namespace: Isolates shared memory and message queues.

« UTS Namespace: Provides separate hostnames.

« User Namespace: Maps container users to host users, improving security.

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

How Isolation Works

Even though containers share the same kernel, namespaces ensure that each container
behaves like an independent system. This makes containers efficient for scaling and

fast deployments.

4.4.3.2 Resource Limits in Containers

Containers use cgroups (Control Groups) to enforce resource limits.
CPU Limits

« cpu.shares: Relative CPU priority
« Cpu.quota & cpu.period: Strict CPU limit

« CPU Pinning: Bind containers to specific CPU cores

Example:

docker run --cpus="1.5" ubuntu
Memory Limits

« Maximum memory allocation
« Swap usage restrictions

« Memory reservation for guaranteed availability

Example:

docker run -m 512m ubuntu
1/0 Limits

« Restricts disk read/write speed
« Limits on IOPS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

Network Limits

. Bandwidth limits
« Traffic shaping (using tc)

« Kubernetes network policies

Containers are extremely fast and efficient, but because they share the same kernel,
their isolation strength is lower compared to VMs.

Comparison Between Virtualization and Containers

Feature Virtual Machines Containers

Isolation Strength Very strong (hardware level) Moderate (kernel level)
Performance Overhead High Very low

Startup Time Slow (seconds—minutes) Very fast (milliseconds)

kernel Sharing No Yes

Resource Efficiency Less Very high

Best Use-case Strong security, legacy OS Microservices, cloud-native apps

Containers provide speed and efficiency, while VMs provide strong security and OS-

level flexibility.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

Importance of Resource Limits & Process Isolation

Resource limits and isolation are critical in all multi-application computing systems.

They ensure:

Prevention of Resource Starvation

No single workload can consume all CPU or memory.
Security and Protection

One compromised workload cannot access another.
Stability and Reliability

Failures do not spread across VMSs or containers.
Multi-Tenant Cloud Support

Different customers can safely share the same hardware.
Predictable Performance

Critical applications receive guaranteed resources.

Real-World Use Cases

Cloud Platforms (AWS, Azure, GCP)

VM instance types use fixed resource limits; Kubernetes manages container
limits.

DevOps and CI/CD Systems

Containers provide isolated build and testing environments.

High-Density Compute Clusters

Containers allow packing many applications efficiently.

Security-Sensitive Workloads

VVMs are preferred due to strong isolation.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

Resource limits and process isolation play an essential role in virtualization and
container technologies. Virtualization provides strong hardware-level isolation using
hypervisors, while containers provide lightweight isolation using Linux namespaces
and cgroups. Both technologies complement each other and are used extensively in
modern cloud computing environments to ensure performance, security, and efficient
resource utilization. These concepts enable safe multi-tenant environments,
predictable system behavior, and the ability to run diverse applications on shared
hardware without interference. They form the backbone of scalable computing in

modern data centres, cloud platforms, and enterprise infrastructures.

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

