ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT II - SOFTWARE DESIGN AND UML DIAGRAMS [9 hours]
Design Principles (Modularity, Reusability, Abstraction), UML Diagrams: Use Case,
Class, Activity, Sequence, Introduction to Design Patterns (Singleton, Factory,

MVC),Building Simple System Architecture (Layered & Client-Server).

UML DIAGRAMS

Unified Modeling Language (UML) is a general purpose modelling language. The
main aim of UML is to define a standard way to visualize the way a system has been
designed. It is quite similar to blueprints used in other fields of engineering.

UML is not a programming language, it is rather a visual language. We use UML
diagrams to portray the behavior and structure of a system. UML helps software
engineers, businessmen and system architects with modelling, design and analysis. The
Object Management Group (OMG) adopted Unified Modelling Language as a standard in
1997. It's been managed by OMG ever since. The International Organization for
Standardization (ISO) published UML as an approved standard in 2005. UML has been
revised over the years and is reviewed periodically.

Advantages of UML

o Most-Used and Flexible.

e Provides standards for software development.

e Reducing costs to develop diagrams of UML using supporting tools.

e Development time is reduced.

e The past faced issues by the developers no longer exist.

e Has large visual elements to construct and easy to follow.

Types of UML Diagrams

UML is linked with object-oriented design and analysis. UML makes use of elements and
forms associations between them to form diagrams. Diagrams in UML can be broadly

classified as:

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

/ Diigsdre \
Behaviour SRieLe
Diagram Diagram
Activity State Machine Class Component Package Object
Diagram l Diagram Diagram Diagram Diagram Diagram
Interaction Use case = Profile
Diagram diagram Composite Deployment Diagram
Structure Diagram
: Diagram
¥ v _
Communication Sequence
Diagram Diagram
Interaction =i
O 5 Timin
B Sh

Structural UML Diagrams

1.

Class Diagram — The most widely used UML diagram is the class diagram. It is the
building block of all object oriented software systems. We use class diagrams to
depict the static structure of a system by showing the system's classes, their methods
and attributes. Class diagrams also help us identify relationships between different
classes or objects.

Composite Structure Diagram — We use composite structure diagrams to represent
the internal structure of a class and its interaction points with other parts of the
system. A composite structure diagram represents the relationship between parts and
their configuration which determine how the classifier (class, a component, or a
deployment node) behaves. They represent the internal structure of a structured
classifier making the use of parts, ports, and connectors. We can also model
collaborations using composite structure diagrams. They are similar to class diagrams
except they represent individual parts in detail as compared to the entire class.

Object Diagram — An Object Diagram can be referred to as a screenshot of the
instances in a system and the relationship that exists between them. Since object
diagrams depict behaviour when objects have been instantiated, we are able to study
the behaviour of the system at a particular instant. An object diagram is similar to a
class diagram except it shows the instances of classes in the system. We depict actual

classifiers and their relationships making the use of class diagrams. On the other hand,

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

an Object Diagram represents specific instances of classes and relationships between
them at a point of time.

4. Component Diagram — Component diagrams are used to represent how the physical
components in a system have been organized. We use them for modelling
implementation details. Component Diagrams depict the structural relationship
between software system elements and help us in understanding if functional
requirements have been covered by planned development. Component Diagrams
become essential to use when we design and build complex systems. Interfaces are
used by components of the system to communicate with each other.

5. Deployment Diagram - Deployment Diagrams are used to represent system
hardware and its software. It tells us what hardware components exist and what
software components run on them. We illustrate system architecture as distribution of
software artifacts over distributed targets. An artifact is the information that is
generated by system software. They are primarily used when a software is being used,
distributed or deployed over multiple machines with different configurations.

6. Package Diagram — We use Package Diagrams to depict how packages and their
elements have been organized. A package diagram simply shows us the dependencies
between different packages and internal composition of packages. Packages help us to
organise UML diagrams into meaningful groups and make the diagram easy to
understand. They are primarily used to organise class and use case diagrams.

Behavior Diagrams

1. State Machine Diagrams — A state diagram is used to represent the condition of the
system or part of the system at finite instances of time. It’s a behavioral diagram and it
represents the behavior using finite state transitions. State diagrams are also referred
to as State machines and State-chart Diagrams. These terms are often used
interchangeably. So simply, a state diagram is used to model the dynamic behavior of
a class in response to time and changing external stimuli.

2. Activity Diagrams — We use Activity Diagrams to illustrate the flow of control in a

system. We can also use an activity diagram to refer to the steps involved in the

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

execution of a use case. We model sequential and concurrent activities using activity
diagrams. So, we basically depict workflows visually using an activity diagram. An
activity diagram focuses on the condition of flow and the sequence in which it
happens. We describe or depict what causes a particular event using an activity
diagram.

3. Use Case Diagrams — Use Case Diagrams are used to depict the functionality of a
system or a part of a system. They are widely used to illustrate the functional
requirements of the system and its interaction with external agents(actors). A use case
1s basically a diagram representing different scenarios where the system can be used.
A use case diagram gives us a high level view of what the system or a part of the
system does without going into implementation details.

4. Sequence Diagram — A sequence diagram simply depicts interaction between objects
in a sequential order i.e. the order in which these interactions take place. We can also
use the terms event diagrams or event scenarios to refer to a sequence diagram.
Sequence diagrams describe how and in what order the objects in a system function.
These diagrams are widely used by businessmen and software developers to
document and understand requirements for new and existing systems.

5. Communication Diagram — A Communication Diagram(known as Collaboration
Diagram) is used to show sequenced messages exchanged between objects. A
communication diagram focuses primarily on objects and their relationships. We can
represent similar information using Sequence diagrams, however, communication
diagrams represent objects and links in a free form.

6. Timing Diagram — Timing Diagram are a special form of Sequence diagrams which
are used to depict the behavior of objects over a time frame. We use them to show
time and duration constraints which govern changes in states and behavior of objects.

7. Imnteraction Overview Diagram —An Interaction Overview Diagram models a
sequence of actions and helps us simplify complex interactions into simpler

occurrences. It is a mixture of activity and sequence diagrams.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

USE CASE DIAGRAMS

A Use Case Diagram in Unified Modeling Language (UML) is a visual
representation that illustrates the interactions between users (actors) and a system. It
captures the functional requirements of a system, showing how different users engage
with various use cases, or specific functionalities, within the system. Use case diagrams
provide a high-level overview of a system’s behavior, making them useful for
stakeholders, developers, and analysts to understand how a system is intended to operate
from the user’s perspective, and how different processes relate to one another. They are
crucial for defining system scope and requirements.

To build one, we use a set of specialized symbols and connectors. An effective use
case diagram can help the team discuss and represent:
e Scenarios in which system or application interacts with people, organizations, or

external systems

e (Goals that the system or application helps those entities (known as actors) achieve
e The scope of the system
Use Case Diagram Notations

UML notations provide a visual language that enables software developers,
designers, and other stakeholders to communicate and document system designs,
architectures, and behaviors in a consistent and understandable manner.
1. Actors

Actors are external entities that interact with the system. These can include users,
other systems, or hardware devices. In the context of a Use Case Diagram, actors initiate
use cases and receive the outcomes. Proper identification and understanding of actors are

crucial for accurately modeling system behavior.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2. Use Cases
Use cases are like scenes in the play. They represent specific things your system
can do. In the online shopping system, examples of use cases could be "Place Order,"

"Track Delivery," or "Update Product Information". Use cases are represented by ovals.

3. System Boundary

The system boundary is a visual representation of the scope or limits of the system
modeling. It defines what is inside the system and what is outside. The boundary helps to
establish a clear distinction between the elements that are part of the system and those
that are external to it. The system boundary is typically represented by a rectangular box
that surrounds all the use cases of the system.

The purpose of system boundary is to clearly outline the boundaries of the system,
indicating which components are internal to the system and which are external actors or

entities interacting with the system.

Deposit

Use Case Diagram Relationships

In a Use Case Diagram, relationships play a crucial role in depicting the

interactions between actors and use cases. These relationships provide a comprehensive

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

view of the system's functionality and its various scenarios. Let's delve into the key types
of relationships and explore examples to illustrate their usage.
1. Association Relationship

The Association Relationship represents a communication or interaction between
an actor and a use case. It is depicted by a line connecting the actor to the use case. This
relationship signifies that the actor is involved in the functionality described by the use
case.
Example: Online Banking System

Actor: Customer

Use Case: Deposit Amount

Association: A line connecting the "Customer" actor to the "Deposit Amount" use

case, indicating the customer's involvement in the funds transfer process.

Deposit Amount

Customer

2. Include Relationship

The Include Relationship indicates that a use case includes the functionality of
another use case. It is denoted by a dashed arrow pointing from the including use case to
the included use case. This relationship promotes modular and reusable design.
Example: Online Banking System

Use Cases: Withdraw Amount, Check Balance

Include Relationship: The "Withdraw Amount" use case includes the functionality

of "Check Balance." Therefore, Withdraw Amount includes the action of Check Balance.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

; Deposit Amount

Customer

. Withdraw \ << melude =

prmnns » Check Balance

3. Extend Relationship

The Extend Relationship illustrates that a use case can be extended by another use
case under specific conditions. It is represented by a dashed arrow with the keyword
"extend." This relationship is useful for handling optional or exceptional behavior.

Example: Flight Booking System

Use Cases: Book Flight, Select Seat

Extend Relationship: The "Select Seat" use case may extend the "Book Flight" use

case when the user wants to choose a specific seat, but it is an optional step.

_ << extend >>
Book Flight . B { Select Seat

Customer

4. Generalization Relationship

The Generalization Relationship establishes an "is-a" connection between two use
cases, indicating that one use case is a specialized version of another. It is represented by
an arrow pointing from the specialized use case to the general use case.

Example: Vehicle Rental System

Use Cases: Rent Car, Rent Bike

Generalization Relationship: Both "Rent Car" and "Rent Bike" are specialized

versions of the general use case "Rent Vehicle."

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Rent Vehicle

Rent Car '_ ' Rent Bike

How to draw a Use Case diagram in UML?
Below are the main steps to draw use case diagram in UML:
Step 1: Identify Actors: Determine who or what interacts with the system. These are your
actors. They can be users, other systems, or external entities.
Step 2: Identify Use Cases: Identify the main functionalities or actions the system must
perform. These are your use cases. Each use case should represent a specific piece of
functionality.
Step 3: Connect Actors and Use Cases: Draw lines (associations) between actors and the
use cases they are involved in. This represents the interactions between actors and the
system.
Step 4: Add System Boundary: Draw a box around the actors and use cases to represent
the system boundary. This defines the scope of your system.
Step 5: Define Relationships: If certain use cases are related or if one use case is an
extension of another, you can indicate these relationships with appropriate notations.
Step 6: Review and Refine: Step back and review your diagram. Ensure that it accurately
represents the interactions and relationships in your system. Refine as needed.
Step 7: Validate: Share your use case diagram with stakeholders and gather feedback.
Ensure that it aligns with their understanding of the system's functionality.
Use Case Diagram example(Online Shopping System)

Let's understand how to draw a Use Case diagram with the help of an Online

Shopping System:

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Actors:
Customer
Admin
Use Cases:
Browse Products
Add to Cart
Checkout
Manage Inventory (Admin)
Relations:
The Customer can browse products, add to the cart, and complete the checkout.

The Admin can manage the inventory.

Online Shopping

View Items

AN
! zzincludes
Maks
Purchase Identity
/ e A
L] .

X

U

<<EErVicErs
Authenticetion

Checkout

Rz a!ered
Custamer
Web
l:ust:umer

credit
Payment
NEW Service
PeyPel
ACTIVITY DIAGRAM:

Activity diagrams are an essential part of the Unified Modeling Language (UML)
that help visualize workflows, processes, or activities within a system. They depict how
different actions are connected and how a system moves from one state to another. By

offering a clear picture of both simple and complex workflows, activity diagrams make it

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

easier for developers and stakeholders to understand how various elements interact in a
system.

Activity diagrams show the steps involved in how a system works, helping us
understand the flow of control. They display the order in which activities happen and
whether they occur one after the other (sequential) or at the same time (concurrent).
These diagrams help explain what triggers certain actions or events in a system.

e An activity diagram starts from an initial point and ends at a final point, showing
different decision paths along the way.

e They are often used in business and process modeling to show how a system behaves
over time.

Activity diagrams may stand alone to visualize, specify, construct, and document
the dynamics of a society of objects, or they may be used to model the flow of control of
an operation. Whereas interaction diagrams emphasize the flow of control from object to
object, activity diagrams emphasize the flow of control from activity to activity.
Notations of Activity Diagrams
1. Control Nodes (Flow Control)

e Initial Node (Start): The starting state before an activity takes place is depicted

using the initial state. It is represented by a Solid black circle

Initial State

e Activity Final Node: This shows the end of the flow in the activity diagram. It is

represented as a solid circle with a hollow circle.
Py
| |
@)

Final State

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Flow Final Node: A point in an Activity diagram where a flow splits into several
mutually exclusive guarded flows. It has one incoming transition and two outgoing
transitions. Circle with an 'X', ends a single flow.

e Decision Node: Diamond, splits flow based on conditions (guards).

3

Decision node

e Merge Node: Diamond, combines alternate flows.

Merge

e Fork Node: We use a synchronization bar to specify the forking and joining of
parallel flows of control. A synchronization bar is a thick horizontal or vertical
line. Thick horizontal bar, splits flow into parallel activities. A Fork may have one
incoming transition and two or more outgoing transitions, each of which

represents an independent flow of control.

Fork

e Join Node: A Join may have two or more incoming transitions and one outgoing

transition. Thick horizontal bar, merges parallel activities.

A‘LL

Join

2. Action/Activity Nodes (Steps/Behaviors)
e Action: An activity represents execution of an action on objects or by objects. We

represent an activity using a rectangle with rounded corners. Basically any action

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

or event that takes place is represented using an activity. Rounded rectangle, a
single executable step (e.g., "Validate User").

e Activity: Larger rounded rectangle, a complex behavior or sub-process.

Aetion or At lvity
Stote

Activity State

e Send Signal: Convex pentagon, sends a signal.

3. Object Nodes (Data & Objects)
e Object Node: Rectangle, represents data or objects.
e Pin: Small rectangle on action edges, input/output for data.
e Data Store: Object node with «datastore» keyword, persistent data.
4. Partitions (Swimlanes) (Responsibilities)
e Partition/Swimlane: Vertical or horizontal lanes, group actions by
participant/department.
5. Flow Edges (Connections)
e Control Flow: Solid arrow, shows sequence of actions.
e Object Flow: Dashed arrow, shows data movement between actions.

e Interrupting Edge: Lightning bolt, interrupts an action.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Activity diagram for Booking ticket:
User Selects
Train and Class

Check Seat
Available

Select Seat

Enter Passenger
Details

Prompt Payment |

Generate
Ticket

Send
Confirmation

InValid Valid

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

SEQUENCE DIAGRAM:

A Sequence Diagram is a key component of Unified Modeling Language (UML)

used to visualize the interaction between objects in a sequential order. It focuses on how

objects communicate with each other over time, making it an essential tool for modeling

dynamic behavior in a system. Sequence diagrams illustrate object interactions, message

flows, and the sequence of operations, making them valuable for understanding use cases,

designing system architecture, and documenting complex processes.

Uses of sequence diagram:

Sequence diagrams are used because they offer a clear and detailed visualization

of the interactions between objects or components in a system, focusing on the order and

timing of these interactions. Here are some key reasons for using sequence diagrams:

e Visualizing Dynamic Behavior: Sequence diagrams depict how objects or systems

interact with each other in a sequential manner, making it easier to understand

dynamic processes and workflows.

e Clear Communication: They provide an intuitive way to convey system behavior,

helping teams understand complex interactions without diving into code.

e Use Case Analysis: Sequence diagrams are useful for analyzing and representing

use cases, making it clear how specific processes are executed within a system.

e Designing System Architecture: They assist in defining how various components

or services in a system communicate, which is essential for designing complex,

distributed systems or service-oriented architectures.

e Documenting System Behavior: Sequence diagrams provide an effective way to

document how different parts of a system work together, which can be useful for

both developers and maintenance teams.

e Debugging and Troubleshooting: By modeling the sequence of interactions, they

help identify potential bottlenecks, inefficiencies, or errors in system processes.
Sequence Diagram Notations

1. Actors

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

An actor in a UML diagram represents a type of role where it interacts with the
system and its objects. It is important to note here that an actor is always outside the

scope of the system we aim to model using the UML diagram.

i Actor

We use actors to depict various roles including human users and other external
subjects. We represent an actor in a UML diagram using a stick person notation. We can
have multiple actors in a sequence diagram.

For example:
Here the user in seat reservation system is shown as an actor where it exists outside the

system and is not a part of the system.

Theater Server
Theater 2 Server 1
\ Insert Card 5
! Select date :
! Offer Seat "
i‘ Submit Order | Submit Order .
| Order Confirmed " Order Confirmed

W = m = = =i = i = i i i = i i i = i i = i b i 2 e L ,

2. Lifelines

A lifeline is a named element which depicts an individual participant in a sequence
diagram. So basically each instance in a sequence diagram is represented by a lifeline.
Lifeline elements are located at the top in a sequence diagram. The standard in UML for
naming a lifeline follows the following format:

Instance Name : Class Name

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

X:Class 1

Here X is the object or
instance name Class 1
is the class name

We display a lifeline in a rectangle called head with its name and type. The head is
located on top of a vertical dashed line (referred to as the stem) as shown above.
e [f we want to model an unnamed instance, we follow the same pattern except now
the portion of lifeline's name is left blank.
e Difference between a lifeline and an actor: A lifeline always portrays an object
internal to the system whereas actors are used to depict objects external to the
system.

The following is an example of a sequence diagram:

Cust_1: Bankl :

Customer Bank

3: Check Balance

4: Balance Amount

3. Messages

Communication between objects is depicted using messages. The messages appear
in a sequential order on the lifeline.

e We represent messages using arrows.

e Lifelines and messages form the core of a sequence diagram.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Cust_2: Bank_2:
Customer Bank

I: Syncronus

Message 'D

2: Asyncronus 3: <<create>>

Message >D Participant
Creation Message

:j 5: Self Message

e e e e S e e i 0 »| Insurance Agent

4: Participant
Deletion Message

B: Reply Message - > D

X

Messages can be broadly classified into the following categories:
1. Synchronous messages

A synchronous message waits for a reply before the interaction can move forward.
The sender waits until the receiver has completed the processing of the message. The
caller continues only when it knows that the receiver has processed the previous message
i.e. it receives a reply message.

e A large number of calls in object oriented programming are synchronous.

e We use a solid arrow head to represent a synchronous message.

User Device

2 : Application Opened

2. Asynchronous Messages
An asynchronous message does not wait for a reply from the receiver. The
interaction moves forward irrespective of the receiver processing the previous message or

not. We use a lined arrow head to represent an asynchronous message.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

User Device

1: Welcome Message

]

4. Create message

We use a Create message to instantiate a new object in the sequence diagram.
There are situations when a particular message call requires the creation of an object. It is
represented with a dotted arrow and create word labelled on it to specify that it is the
create Message symbol.
For example:
The creation of a new order on a e-commerce website would require a new object of

Order class to be created.

User

! <<create>>
! 1: New Order

Order: Order |

5. Delete Message

We use a Delete Message to delete an object. When an object is deallocated
memory or is destroyed within the system we use the Delete Message symbol. It destroys
the occurrence of the object in the system.It is represented by an arrow terminating with a

X.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

For example:
In the scenario below when the order is received by the user, the object of order class can

be destroyed.

User

Order : Order 1

Order Recieved ><

6. Self Message
Certain scenarios might arise where the object needs to send a message to itself.
Such messages are called Self Messages and are represented with a U shaped arrow.
For example:
Consider a scenario where the device wants to access its webcam. Such a scenario is

represented using a self message.

User Device

1: Open Application

B

.

2: Access Webcam

.

7. Reply Message

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Reply messages are used to show the message being sent from the receiver to the
sender. We represent a return/reply message using an open arrow head with a dotted
line. The interaction moves forward only when a reply message is sent by the receiver.
For example:

Consider the scenario where the device requests a photo from the user. Here the message

which shows the photo being sent is a reply message.

User Device

2: Access Webcam

3: Get Photo

4: Photo

1: Open Application

Y

8. Found Message

A Found message is used to represent a scenario where an unknown source sends
the message. It is represented using an arrow directed towards a lifeline from an end
point. It can be due to multiple reasons and we are not certain as to what caused the

hardware failure.

User Device

I: Open Application

Y

2: Access Webcam)

3: Hardware Failure —— & 3

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

9. Lost Message

A Lost message is used to represent a scenario where the recipient is not known to
the system. It is represented using an arrow directed towards an end point from a lifeline.
The warning might be generated for the user or other software/object that the lifeline is
interacting with. Since the destination is not known before hand, we use the Lost

Message symbol.

User Device

1: Open Application

Y

2: Access Webcam

3: Warning

—>e

10. Guards

To model conditions we use guards in UML. They are used when we need to
restrict the flow of messages on the pretext of a condition being met. Guards play an
important role in letting software developers know the constraints attached to a system or
a particular process.
For example:
In order to be able to withdraw cash, having a balance greater than zero is a condition that

must be met as shown below.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Cust_2: Customer Bank_2: Bank

m

'

Y

Application
1 r :
i 2: Access |
i Webcams . |
. b !

3: Get photo

| batabase
. 1. Open . .

| 7: Display Mood
[

O 4: Detect Face |
. 2 D 5: Retrieve Mood
: ¢

U‘ 6: Mood |
10: Playlist = .
7 i 8: Retrieve Music
| e <
O 8: Generated Playlist ;

CLASS DIAGRAM
A UML class diagram visually represents the structure of a system by showing its
classes, attributes, methods, and the relationships between them.
1. Helps everyone involved in a project—like developers and designers—understand
how the system is organized and how its components interact.

2. Helps to communicate and document the structure of the software.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Animal

+age: Int
+gender: String

+isMammal ()

+mate()
| I |
Duck Fish Zebra
+beakColr:String="Yellow" -sizelnFt: Int +is_wild: Boolean
: -cankat: Boolean
+swim () e
+quack() -swim ()

Class Notation
Classes are depicted as boxes, each containing three compartments for the class

name, attributes, and methods.

Car <— Name
- make: String
- model: String <— Attributes
f-yeur:int

+ start() : void

+ stop() - void *—' Operdtions

+ drive(in speed: int) : void

/

Visibility notation

1. Class Name: The name of the class is typically written in the top compartment of
the class box and is centered and bold.

2. Attributes: Attributes, also known as properties or fields, represent the data
members of the class. They are listed in the second compartment of the class box
and often include the visibility (e.g., public, private) and the data type of each
attribute.

3. Methods: Methods, also known as functions or operations, represent the behavior or

functionality of the class. They are listed in the third compartment of the class box

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

and include the visibility (e.g., public, private), return type, and parameters of each
method.
4. Visibility Notation: Visibility notations indicate the access level of attributes and
methods. Common visibility notations include:
e + for public (visible to all classes)
e - for private (visible only within the class)
e # for protected (visible to subclasses)
e ~ for package or default visibility (visible to classes in the same package)
Parameter Directionality
e In class diagrams, parameter directionality refers to the indication of the flow of
information between classes through method parameters.
e [t helps to specify whether a parameter is an input, an output, or both. This
information is crucial for understanding how data is passed between objects during

method calls.

Car

- make: String
- model: String
- year: int

+ start() : void
+ stop() : void
+ drive(in speed: int) : void

b

Parameter Directionality

There are three main parameter directionality notations used in class diagrams:
e In (Input):
o An input parameter is a parameter passed from the calling object (client) to the
called object (server) during a method invocation.
o It is represented by an arrow pointing towards the receiving class (the class that
owns the method).

e Out (Output):

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

o An output parameter is a parameter passed from the called object (server) back
to the calling object (client) after the method execution.
o Itis represented by an arrow pointing away from the receiving class.
e InOut (Input and Output):
o An InOut parameter serves as both input and output. It carries information from
the calling object to the called object and vice versa.
o It is represented by an arrow pointing towards and away from the receiving
class.
Relationships between classes
In class diagrams, relationships between classes describe how classes are
connected or interact with each other within a system. Here are some common types of

relationships in class diagrams:

— = e
Composition Directed Association Usage(Dependency) Generalization
________ > e
Aggregation Association Dependency Realization

1. Association

An association represents a bi-directional relationship between two classes. It indicates
that instances of one class are connected to instances of another class. Associations are
typically depicted as a solid line connecting the classes, with optional arrows indicating
the direction of the relationship.

2. Directed Association

A directed association in a UML class diagram represents a relationship between two
classes where the association has a direction, indicating that one class is associated with
another in a specific way.

3. Aggregation

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Aggregation is a specialized form of association that represents a "whole-part"
relationship. It denotes a stronger relationship where one class (the whole) contains or is
composed of another class (the part). Aggregation is represented by a diamond shape on
the side of the whole class. In this kind of relationship, the child class can exist
independently of its parent class.

4. Composition

Composition is a stronger form of aggregation, indicating a more significant ownership
or dependency relationship. In composition, the part class cannot exist independently of
the whole class. Composition is represented by a filled diamond shape on the side of the
whole class.

5. Generalization(Inheritance)

Inheritance represents an "is-a" relationship between classes, where one class (the
subclass or child) inherits the properties and behaviors of another class (the superclass or
parent). Inheritance is depicted by a solid line with a closed, hollow arrowhead pointing
from the subclass to the superclass.

6. Realization (Interface Implementation)

Realization indicates that a class implements the features of an interface. It is often used
in cases where a class realizes the operations defined by an interface. Realization is
depicted by a dashed line with an open arrowhead pointing from the implementing class
to the interface.

7. Dependency Relationship

A dependency exists between two classes when one class relies on another, but the
relationship is not as strong as association or inheritance. It represents a more loosely
coupled connection between classes.

8. Usage(Dependency) Relationship

A usage dependency relationship in a UML class diagram indicates that one class (the
client) utilizes or depends on another class (the supplier) to perform certain tasks or
access certain functionality. The client class relies on the services provided by the

supplier class but does not own or create instances of it.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

In UML class diagrams, usage dependencies are typically represented by a dashed
arrowed line pointing from the client class to the supplier class.
The arrow indicates the direction of the dependency, showing that the client class

depends on the services provided by the supplier class.

Purpose of Class Diagrams

The main purpose of using class diagrams is:

This is the only UML that can appropriately depict various aspects of the OOPs
concept.

Proper design and analysis of applications can be faster and efficient.

It is the base for deployment and component diagrams.

[t incorporates forward and reverse engineering.

Benefits of Class Diagrams

Below are the benefits of class diagrams:

Class diagrams represent the system's classes, attributes, methods, and relationships,
providing a clear view of its architecture.

They show various relationships between classes, such as associations and
inheritance, helping stakeholders understand component connectivity.

Class diagrams serve as a visual tool for communication among team members and
stakeholders, bridging gaps between technical and non-technical audiences.

They guide developers in coding by illustrating the design, ensuring consistency
between the design and actual implementation.

Many development tools allow for code generation from class diagrams, reducing

manual errors and saving time.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES

