
Monte Carlo vs. Las Vegas Algorithms 

Classical vs. Randomized Algorithms 

Classical (Deterministic) Algorithms 

Think of a standard algorithm you’ve learned, like MergeSort or Dijkstra’s. 

 Input: It takes an input . 

 Process: It performs a fixed sequence of operations based on . 

 Output: It produces an output . 

 

Key characteristics of a classical algorithm: 

 Correctness: The output  is always precise and correct for a given input . 

 Consistency: For the same input , the output  is always the same. (The 

algorithm  behaves like a mathematical function.) 

 Deterministic Runtime: For the same input , the runtime of algorithm  is always the 

same. 

 Reproducibility: The behavior of the algorithm is entirely reproducible. Give it the 

same input, and you get the same steps, same output, same runtime. 

Randomized Algorithms 

Randomized algorithms introduce an element of chance into the process. 

 Input: They take an input . 

 Random Source: They also have access to a source of randomness, let’s call it . This 

could be a sequence of random bits, random numbers drawn from a distribution, etc. 

 Process: The algorithm’s operations can depend on both  and the random values 

from . 

 Output: The output is . 

 

Consequences of using randomness: 



 The output now depends on both the input  and the specific random choices  made 

during execution. 

 This means the output might be: 

o Sometimes correct. 

o Sometimes almost correct (e.g., a close approximation). 

o Sometimes fast (the runtime itself can be a random variable). 

 Non-Reproducibility: Generally, if you run the algorithm twice with the same 

input  but with different random choices from  (which is typical unless you fix the 

random seed), you might get different outputs or different runtimes. However, the 

algorithm  is still a deterministic function if you consider the pair  as its combined 

input. 

The Random Source 

Where does this randomness  come from? 

 The random source provides random, independent bits or numbers, drawn according 

to some specified (often uniform) distribution. 

Possible sources: 

 Physical Random Number Generators: These leverage inherently random physical 

processes. 

o Examples: Lotto numbers, Geiger counters (radioactive decay), thermal noise 

in circuits, quantum phenomena. These are good sources of “true” randomness 

but can be slow or impractical for direct use in algorithms. 

 Deterministic (Pseudo-)Random Number Generators (PRNGs): These are 

algorithms that produce a sequence of numbers that “look” random and pass many 

statistical tests for randomness, but are actually generated deterministically from an 

initial seed value. 

o Given a seed , a PRNG produces a sequence . 

o Advantage: If you know the seed, you can reproduce the exact same sequence 

of “random” numbers. This is invaluable for debugging randomized 

algorithms. 

o Caveat: PRNGs are not truly random. A sophisticated adversary who knows 

the PRNG algorithm and can observe enough output might predict future 

“random” numbers. The quality of PRNGs varies widely. 

Our Assumption in Analysis 

For theoretical analysis, we typically assume access to an ideal random source that provides 

perfectly random, independent bits/numbers as needed. 



In practice, we use high-quality PRNGs. The potential discrepancy between theory (ideal 

randomness) and practice (pseudo-randomness) is something to be aware of, though often 

PRNGs are good enough for most applications. 

Monte Carlo vs. Las Vegas Algorithms 

Randomized algorithms are broadly categorized based on how randomness affects their 

correctness and runtime. The two main types are named after famous gambling locations: 

Monte Carlo and Las Vegas. 

 

Monte Carlo Algorithms 

 Correctness/Quality: The correctness or quality of the output is a random variable. 

The algorithm might produce an incorrect answer or an answer of varying quality 

with some probability. 

 Runtime: Typically, the runtime of a Monte Carlo algorithm is not dependent on the 

random choices (or is bounded deterministically). It usually runs for a predetermined 

number of steps. 

 Goal: 

o Always (or predictably) fast. 

o Mostly correct or provides a good quality answer with high probability. 

Las Vegas Algorithms 

 Runtime: The runtime is a random variable. It might finish quickly on some random 

choices, and slowly on others. 

 Correctness/Quality: The correctness or quality of the output is not dependent on 

the random choices. If the algorithm produces an answer, that answer is guaranteed 

to be correct. 

 Goal: 

o Always correct/good (when an answer is given). 



o Mostly fast (i.e., the expected runtime is good, or it finishes quickly with high 

probability). 

Alternative View of Las Vegas Algorithms 

Sometimes, a Las Vegas algorithm is designed such that it might explicitly output ”???” (or 

“I don’t know”) instead of a correct answer if it gets “unlucky” with its random choices 

within a certain time bound. The guarantee is that if it does give an answer other than ”???”, 

that answer is correct. 

This leads to two common operational modes for Las Vegas algorithms: 

1. Repeat until an answer: If the algorithm can output ”???”, you simply run it 

repeatedly until it gives a definite (and thus correct) answer. The analysis then focuses 

on the expected number of repetitions. 

2. Abort after fixed time: Run the algorithm for a predetermined maximum time. If it 

produces an answer within this time, great. If not, it aborts and outputs ”???“. 

A Las Vegas algorithm whose runtime is a random variable can be converted into one that 

sometimes outputs ’???’ by imposing a runtime cutoff (e.g., based on Markov’s inequality 

applied to its runtime). 

Reducing Error Probability 

One of the powerful features of randomized algorithms is that we can often decrease the 

probability of an undesirable outcome (like getting no answer, or getting a wrong answer) by 

simply running the algorithm multiple times. 

Reducing “Failure to Answer” for Las Vegas Algorithms 

Recall that a Las Vegas algorithm is always correct if it provides an answer, but it might 

sometimes fail to do so, perhaps by outputting a special symbol like ”???” or by exceeding a 

time limit. 

Goal 

Suppose we have a Las Vegas algorithm . For any input , it gives a correct answer with a 

probability of at least . This means the probability of it outputting ”???” is at most . Our goal 

is to construct a new algorithm, , that gives a correct answer with an even higher probability, 

specifically at least , where  is some small target failure probability. 

Idea: Repetition 

The natural approach is to run the original algorithm  multiple times. If any of these runs 

gives a definite answer, we can use it. But how many repetitions are enough? 

Theorem: Amplifying Success for Las Vegas Algorithms 

Let  be a randomized algorithm that never gives a false answer. However, it might sometimes 

output ”???” (indicating no answer found). Let  for any input . 



For any desired overall failure probability : 

Construct a new algorithm  as follows: 

1. Repeatedly call . 

2. If any call to  returns a value different from ”???”, then  immediately stops and returns 

that value. 

3. If  has been called  times and all calls have resulted in ”???”, then  stops and outputs 

”???“. 

Then, the probability that  provides a correct answer for input  is at least . That is, . 

Proof 

The algorithm  fails to provide a correct answer if and only if every one of its  independent 

calls to  results in ”???“. 

The probability that a single call to  results in ”???” is . 

Since the  calls are independent, the probability that all  calls fail is: . 

We want this failure probability to be at most . So we need to find  such that . 

We know that for any real number , . Applying this with : . 

So, we need . 

Taking the natural logarithm of both sides (which is a monotonically increasing function, so 

it preserves the inequality):   

Multiplying by  (and reversing the inequality sign): 

  . 

By choosing , we satisfy this condition. 

Therefore, . 

The probability that  provides a correct answer is . This completes the proof. 

Example: Number of Iterations 

Let’s see how many iterations  are needed for some practical values. Suppose our base Las 

Vegas algorithm  has a success probability  (it finds an answer 1 out of 4 times on average). 

Then . 

Target Failure Prob. () Min. Iterations ()  

0.1 10 0.9 

0.01 19 0.99 



Target Failure Prob. () Min. Iterations ()  

0.001 28 0.999 

0.0001 37 0.9999 

0.00001 47 0.99999 

0.000001 56 0.999999 

Key Observation: To decrease the failure probability by a constant factor (e.g., from  to ), 

the number of required iterations  increases only by an additive constant amount (). This 

makes boosting the success probability of Las Vegas algorithms very efficient. 

Reducing Error for Monte Carlo Algorithms 

For Monte Carlo algorithms, which may produce incorrect answers, reducing the error 

probability by simple repetition isn’t always straightforward. 

General Case Limitation: 

If a Monte Carlo algorithm is no better than random guessing (e.g., it flips a coin to decide 

between “JA” and “NEIN”, and its probability of being correct is exactly ), then simply 

repeating it and, say, taking a majority vote won’t improve things. The error probability 

remains . 

Error reduction for Monte Carlo algorithms is generally possible under two main conditions: 

1. The algorithm exhibits one-sided error. 

2. The algorithm’s probability of being correct is strictly greater than  (i.e., it has some 

“edge” over random guessing). 

Monte Carlo with One-Sided Error 

This is common in decision problems where an error can only occur for one type of instance 

(e.g., it might falsely identify a “NO” instance as “YES”, but never a “YES” instance as 

“NO”). 

Definition (One-Sided Error Example) 

An algorithm  has one-sided error if, for a decision problem (JA/NEIN): 

 If the input  is a JA-instance: . (It’s always correct). 

 If the input  is a NEIN-instance: . (It’s correct with probability at least ). This implies 

it erroneously outputs JA with probability at most . 

(The roles of JA and NEIN can be swapped depending on the specific algorithm). 

Theorem: Error Reduction for One-Sided Monte Carlo 

Let  be a Monte Carlo algorithm with one-sided error as defined above: . . 



For any desired overall error probability : 

Construct  as follows: 

1. Repeatedly call . 

2. If any call to  returns NEIN, then  immediately stops and returns NEIN. 

3. If  has been called  times and all calls have resulted in JA, then  stops and outputs JA. 

Then, the probability that  gives the correct answer for input  is at least . That is, . 

Proof 

We analyze the two cases for the true nature of input : 

 Case 1:  is a JA-instance. According to the properties of , every call to  on a JA-

instance will output JA. Therefore,  will either see  consecutive JAs and output JA 

(rule 3), or it would have stopped earlier if NEIN was possible (but it’s not for JA-

instances). So,  correctly outputs JA. . 

 Case 2:  is a NEIN-instance. The algorithm  makes an error if it outputs JA when  is 

a NEIN-instance. This happens if and only if all  independent calls to  outputted JA. 

For a NEIN-instance, the probability that a single call to  outputs JA (an error) is . 

So, . Using the same reasoning as in the Las Vegas proof, if we choose , then . Thus, . 

Since  is correct with probability 1 for JA-instances and with probability at least  for NEIN-

instances, its overall probability of being correct is at least . 

Monte Carlo with Two-Sided Error (Correctness Probability ) 

Now, consider a Monte Carlo algorithm  that always gives a JA or NEIN answer, but it can 

be wrong in either direction. However, it’s better than a random guess: , for some . 

Theorem: Majority Vote for Two-Sided Error Amplification 

Let  be a Monte Carlo algorithm such that  for some . For any desired overall error 

probability : 

Construct  as follows: 

1. Call  a total of  times independently. 

2.  outputs the answer (JA or NEIN) that occurred most frequently among the  trials (the 

majority vote). If there’s a tie, it can break it arbitrarily, e.g., output JA. 

Then, . 

Proof 

We analyze a Monte Carlo algorithm  that returns the correct answer with probability at 

least  for some known . We define a new algorithm  which runs  independently  times and 

returns the majority answer. 



We show that: 

Setup 

Let: 

  

  

 Let  be the number of correct answers in  independent runs of . 

 So  

 We want to bound: 

Step 1: Expected Value of X 

The expected number of correct runs is: 

We now show that: 

Step 2: Verifying the Chernoff Condition 

We expand the right-hand side of (★): 

So: 

This holds for all , so (★) is valid. 

Step 3: Applying Chernoff Bound 

Using the Chernoff bound for the lower tail: 

By (★), we have: 

Step 4: Bounding the Exponent 

We use: 

So: 

We want this to be at most : 

Thus, choosing: 

ensures: 

Final Conclusion 

With this value of , the amplified algorithm  satisfies: 

This shows that any Monte Carlo algorithm with correctness probability  can be boosted to 

failure probability at most  using: 

independent repetitions and majority vote. 



Randomized Algorithms for Optimization Problems 

Randomized algorithms can also be applied to optimization problems (e.g., finding a 

maximum clique, minimum spanning tree, etc.). 

Typical Scenario: 

 The algorithm always produces a feasible (valid) solution. 

 The quality of this solution is a random variable; it’s not necessarily the optimal one. 

Suppose for a maximization problem, we want a solution with value at least  (our target 

quality for input ). Assume our base randomized algorithm  achieves this target quality with 

at least probability : . 

Goal: Design an algorithm  that achieves quality  with a higher probability, at least . 

Theorem: Amplification for Optimization by Repetition 

Let  be a randomized algorithm for an optimization problem (assume maximization without 

loss of generality). Suppose . 

For any desired success probability  (where  is the failure probability): 

Construct  as follows: 

1. Call the original algorithm  a total of  times independently. 

2.  outputs the solution that has the best value among all  solutions obtained. 

Then, . 

Proof 

The algorithm  fails to achieve a solution of quality at least  if and only if every one of 

the  independent trials of  produces a solution with value less than . 

The probability that a single trial of  fails to meet the target quality is . 

Since the  trials are independent, the probability that all  trials fail is: . 

This is the same mathematical situation as in the Las Vegas amplification. By choosing , we 

ensure that . 

Therefore, the probability that  succeeds (i.e., at least one of the  trials achieves the target 

quality, and thus the best of them does) is . 

This “repeat and take best” strategy is a common and effective way to boost the performance 

of randomized optimization algorithms. 

 


