4.2 DOCKER ARCHITECTURE

Docker is an open-source platform for developing, shipping, and running
applications inside lightweight, portable containers. Containers package the
application code, runtime, libraries, and dependencies together, ensuring the

application runs consistently across different environments.
Example:

« You have a Python program that needs Python 3.10 and some libraries.

« On your computer, you may have a different Python version installed.

« Using Docker, you can put your Python program and the correct Python
version in a container, and it will run the same way on any computer without

conflicts.

Docker follows aclient-server architecture. The Docker client
communicates with a background process, the Docker Daemon, which does the

heavy lifting of building, running, and managing your containers.

| Design |

| Development

- - - - = = = — —1
I !
| | Deployment I &
i]

Docker

| Testing/Release |

This communication happens over a REST API, typically via UNIX sockets
on Linux (e.g., /var/run/docker.sock) or a network interface for remote

management.

The Core Architectural Model
« Docker Client: This is your command center. When you type commands

like docker run or docker build, you're using the Docker Client.

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

« Docker Host: This is the machine where the magic happens. It runs the
Docker Daemon (dockerd) and provides the environment to execute and run
containers.

« Docker Registry: This is a remote repository for storing and distributing your
Docker images. This interaction forms a simple yet powerful loop: you use
the Client to issue commands to the Daemon on the Host, which can pull
images from a Registry to run as containers. In Docker the meaning of push

is upload and pull means download.

-

Client | Docker_Host]7 Registry |

- —

| Docker build t-- ------------ [] Docker Daemon @

L

-
- 1
.

- L
.
-~ Conlaincrsl i

| Docker pull |

(oo ran 1|
(=]
................ build @

Core Components are -
1. The Docker Daemon (dockerd):

The Docker Daemon is the persistent background process that acts as the brain
of your Docker installation.

« It runs on the Docker Host.

« It listens for API requests from the Docker Client.

. It manages all Docker objects such as images, containers, networks, and

volumes.

It can communicate with other daemons to manage Docker services in a multi-host

environment (like a Docker Swarm cluster. A Docker Swarm cluster is a group of

1 ———
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

Docker hosts (machines) that are joined together to work as a single virtual Docker
engine).

. It allows you to deploy and manage containers across multiple machines

efficiently.

2. The Docker Client:

The Docker Client is the primary interface through which users interact with
Docker. This is most commonly the Command Line Interface (CLI).

« It translates user commands like docker ps into REST API requests.

« These requests are sent to the Docker Daemon for processing.

« A single client can communicate with multiple daemons.
Common Commands:

« docker build: Builds an image from a Dockerfile.

« docker pull: Pulls an image from a registry.

 docker run: Creates and starts a container from an image.
3. The Docker Host
The Docker Host is the physical or virtual machine that provides the complete
environment for executing and running containers. It comprises:

« The Operating System (and its kernel).

« The Docker Daemon.

« Images that have been pulled or built.

« Running Containers.

. Networks and Storage components.

The Docker Host is the machine that provides the environment to run Docker,

including its containers, images, networks, and storage resources.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

4.2.1. Images:

A Docker image is a read-only template used to create containers. It contains
the instructions for creating a Docker container. It contains all the necessary code,
libraries, configuration files, and environment settings required for an application to
run. That contains the instructions for creating a Docker container. It act as a
blueprint or a class in object-oriented programming for creating docker containers.
It provide consistency and portability across different environments. Images are
created using DOckerfiles, stored in registries like Docker hub, and can be easily

pulled, pushed and shared.

« Docker images are the read-only binary templates used to create a Docker
container.

. It's built from a Dockerfile, a simple text file defining the steps to assemble
the image.

. Images are built in layers, where each instruction in the Dockerfile
corresponds to a layer. This layered architecture makes builds and
distribution incredibly efficient.

. Images are immutable, meaning once created, they cannot be changed. Any
change results in a new image.

« Images are builtin layers. Each instruction in a Dockerfile creates a new layer.

« Images can be shared through registries, allowing applications to run

consistently across different systems.

4.2.2. Containers:
A container is a runnable, live instance of an image. If an image is the blueprint,
a container is the house built from that blueprint.
. It is portable box for software applications.
« You can create, start, stop, move, or delete containers using the Docker API
or CLI.

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

« Each container is isolated from other containers and the host machine,

having its own filesystem, networking, and process space.

« You can run multiple containers from the same image.

« Containers are lightweight because they share the host system’s kernel.

« Containers can run on any system where Docker is installed, making them

portable.

Docker Container

4.2.3. Registry:

Pull
Image

Docker

Hub ’
Pull
Image

I Docker Image I

Docker
Container

Staging Environment

I Docker Image I

Docker
Container

Test Environment

A registry is a scalable storage system for Docker images. Registries allow

developers and organizations to store, share, and distribute images. Storage systems

for images, enabling sharing and distribution.

Types of registries:

« Public Registry: The default public registry is Docker Hub, which contains

a vast collection of community and official images. Example — Docker Hub,

where anyone can publish or download images.

. Private Registries: Organizations often use private registries (like Harbor,

AWS ECR, or Google Artifact Registry) to store proprietary images for

security and control. Used within organizations to store images securely.
I ————

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5

Registries make it easy to store, version, and distribute images, make
application deployment faster by allowing images to be pulled directly into a

host system.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

