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Jaccard Similarity Coefficient 

Jaccard Similarity Coefficient quantifies how similar two finite sets really are and is defined 

as the size of their intersection divided by the size of their union. This similarity measure is 

very intuitive and we can clearly see that it is a real-valued measure bounded in the 

interval [0, 1]. 

 

The coefficient is 0 when the two sets are mutually exclusive (disjoint) and it is 1 when the 

sets are equal. Below we see the one-line python function that computes this similarity 

measure. 

def similarity_jaccard(a: set, b: set) -> float: 

    return len(a.intersection(b)) / len(a.union(b)) 

Jaccard Similarity Coefficient as Probability 

Jaccard Coefficient can also be interpreted as the probability that an element picked at 

random from the universal set U is present in both sets A and B. 

 

Another analogy for this probability is the chances of throwing a dart and it hitting the 

intersection. Thus we see how we can transform the Jaccard Similarity Coefficient into a 



simple probability statement. This will come in very handy when we try to optimize the 

computation at scale. 

Problem at Scale 

Computing Jaccard Similarity Coefficient is very simple, all we require is a union operation 

and an intersection operation on the participating sets. But these computations go haywire 

when things run at scale. 

Computing set similarity is usually a subproblem fitting in a bigger picture, for example, 

near-duplicate detection which finds near-duplicate articles across millions of documents. 

When we tokenize the documents and apply raw Jaccard Similarity Coefficient for every two 

combinations of documents we find that the computation will take years. 

Instead of finding the true value for this coefficient, we can rely on an approximation if we 

can get a considerable speedup and this is where a technique called MinHash fits well. 

MinHash 

MinHash algorithm gives us a fast approximation to the Jaccard Similarity Coefficient 

between any two finite sets. Instead of computing the unions and the intersections every 

single time, this method once creates MinHash Signature for each set and use it to 

approximate the coefficient. 

Computing single MinHash 

MinHash h of the set S is the index of the first element, from a permuted Universal Set, that 

is present in the set S. But since permutation is a computation heavy operation especially for 

large sets we use a hashing/mapping function that typically reorders the elements using 

simple math operation. One such hashing function is 

 

If u is the total number of elements in the Universal Set U then a and b are the random 

integers less than u and c is the prime number slightly higher than u. A sample permute 

function could be 

def permute_fn(x: int) -> int: 

    return (23 * x + 67) % 199 

Now that we have defined permutation as a simple mathematical operation that spits out the 

new row index, we can find MinHash of a set as the element that has the minimum new row 

number. Hence we can define the MinHash function as 

def minhash(s: set) -> int: 

    return min([permute_fn(e) for e in s]) 

https://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/


A surprising property of MinHash 

MinHash has a surprising property, according to which, the probability that the MinHash of 

random permutation produces the same value for the two sets equals the Jaccard Similarity 

Coefficient of those sets. 

 

The above equality holds true because the probability of MinHash of two sets to be the same 

is the number of elements present in both the sets divided by the total number of elements in 

both the sets combined; which in fact is the definition of Jaccard Similarity Coefficient. 

Hence to approximate Similarity Coefficient using MinHash all we have to do is find the 

Probability of MinHash of two sets to be the same, and this is where the MinHash Signature 

comes in to play. 

MinHash Signature 

MinHash Signature of a set S is a collection of k MinHash values corresponding to k different 

MinHash functions. The size k depends on the error tolerance, keeping it higher leads to more 

accurate approximations. 

def minhash_signature(s: set): 

    return [minhash(s) for minhash in minhash_fns] 

MinHash functions usually differ in the permutation parameters i.e. coefficients a, b and c. 

Now in order to compute Pr[h(A) = h(B)] we have to compare the MinHash Signature of the 

participating sets A and B and find how many values in their signatures match; dividing this 

number by the number of hash functions k will give the required probability and in turn an 

approximation of Jaccard Similarity Coefficient. 

def similarity_minhash(a: set, b: set) -> float: 

    sign_a = minhash_signature(a) 

    sign_b = minhash_signature(b) 

    return sum([1 for a, b in zip(sign_a, sign_b) if a == b]) / len(sign_a) 

MinHash Signature could well be computed just once per set. 

Thus to compute set similarity, we need not perform heavy computation like Union and 

Intersection and that too across millions of sets at scale, rather we can simply 

compare k items of in their signatures and get a fairly good estimate of it. 

How good is the estimate? 



In order to find how close the estimate is we compute the Jaccard Similarity Coefficient and 

its approximate using MinHash on two disjoint sets having equal cardinality. One of the sets 

will undergo a transition where one element of it will be replaced with one element of the 

other set. So with time, the sets will go from disjoint to being equal. 

 

The illustration above shows the two plots and we can clearly see that the MinHash technique 

provides a fairly good estimate of Jaccard Similarity Coefficient with much fewer 

computations 

Jaccard Coefficient vs MinHash 

While both methods aim to measure set similarity, their characteristics differ: 

Aspect Jaccard Coefficient MinHash 

Accuracy Exact Approximate 

Computational Cost High for large sets Lower, depends on the number of hash functions 

Use Case Small to medium datasets Large-scale datasets 

Locality Sensitive Hashing (LSH): The Illustrated Guide 

Locality sensitive hashing (LSH) is a widely popular technique used in approximate nearest 

neighbor (ANN) search. The solution to efficient similarity search is a profitable one — it is 

at the core of several billion (and even trillion) dollar companies. 



Big names like Google, Netflix, Amazon, Spotify, Uber, and countless more rely on 

similarity search for many of their core functions. 

Amazon uses similarity search to compare customers, finding new product recommendations 

based on the purchasing history of their highest-similarity customers. 

Every time you use Google, you perform a similarity search between your query/search term 

— and Google’s indexed internet. 

If Spotify manages to recommend good music, it’s because their similarity search algorithms 

are successfully matching you to other customers with a similarly good (or not so good) taste 

in music. 

LSH is one of the original techniques for producing high quality search, while maintaining 

lightning fast search speeds. In this article we will work through the theory behind the 

algorithm, alongside an easy-to-understand implementation in Python! 

You can find a video walkthrough of this article here: 

Search Complexity 

Imagine a dataset containing millions or even billions of samples — how can we efficiently 

compare all of those samples? 

Even on the best hardware, comparing all pairs is out of the question. This produces an at 

best complexity of O(n²). Even if comparing a single query against the billions of samples, 

we still return an at best complexity of O(n). 

We also need to consider the complexity behind a single similarity calculation — every 

sample is stored as a vector, often very highly-dimensional vectors — this increases our 

complexity even further. 

How can we avoid this? Is it even possible to perform a search with sub-linear 

complexity? Yes, it is! 

The solution is approximate search. Rather than comparing every vector (exhaustive search) 

— we can approximate and limit our search scope to only the most relevant vectors. 

LSH is one algorithm that provides us with those sub-linear search times. In this article, we 

will introduce LSH and work through the logic behind the magic. 

 

Locality Sensitive Hashing 

When we consider the complexity of finding similar pairs of vectors, we find that the number 

of calculations required to compare everything is unmanageably enormous even with 

reasonably small datasets. 

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/


Let’s consider a vector index. If we were to introduce just one new vector and attempt to find 

the closest match — we must compare that vector to every other vector in our database. This 

gives us a linear time complexity — which cannot scale to fast search in larger datasets. 

The problem is even worse if we wanted to compare all of those vectors against each other — 

the optimal approach sorting method to achieve this is at best log-linear time complexity. 

So we need a way to reduce the number of comparisons. Ideally, we want only to compare 

vectors that we believe to be potential matches — or candidate pairs. 

Locality sensitive hashing (LSH) allows us to do this. 

LSH consists of a variety of different methods. In this article, we’ll be covering the 

traditional approach — which consists of multiple steps — shingling, MinHashing, and the 

final banded LSH function. 

At its core, the final LSH function allows us to segment and hash the same sample several 

times. And when we find that a pair of vectors has been hashed to the same value at least 

once , we tag them as candidate pairs — that is, potential matches. 

It is a very similar process to that used in Python dictionaries. We have a key-value pair 

which we feed into the dictionary. The key is processed through the dictionary hash function 

and mapped to a specific bucket. We then connect the respective value to this bucket. 

 

A typical hash function aims to place different values (no matter how similar) into separate 

buckets. 

However, there is a key difference between this type of hash function and that used in LSH. 

With dictionaries, our goal is to minimize the chances of multiple key-values being mapped 

to the same bucket — we minimize collisions. 



LSH is almost the opposite. In LSH, we want to maximize collisions — although ideally only 

for similar inputs. 

 

An LSH function aims to place similar values into the same buckets. 

There is no single approach to hashing in LSH. Indeed, they all share the same ‘bucket 

similar samples through a hash function’ logic , but they can vary a lot beyond this. 

The method we have briefly described and will be covering throughout the remainder of this 

article could be described as the traditional approach, using shingling, MinHashing, 

and banding. 

There are several other techniques, such as Random Projection which we cover in another 

article. 

 

Shingling, MinHashing, and LSH 

The LSH approach we’re exploring consists of a three-step process. First, we convert text to 

sparse vectors using k-shingling (and one-hot encoding), then use minhashing to create 

‘signatures’ — which are passed onto our LSH process to weed out candidate pairs. 

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/


 

A high-level view of the LSH process we will be working through in this article. 

We will discuss some of the other LSH methods in future articles. But for now, let’s work 

through the traditional process in more depth. 

k-Shingling 

k-Shingling, or simply shingling — is the process of converting a string of text into a set of 

‘shingles’. The process is similar to moving a window of length k down our string of text and 

taking a picture at each step. We collate all of those pictures to create our set of shingles. 

k-Shingling consists of moving through a string and adding k characters at a time to a 

‘shingle set’. 

Shingling also removes duplicate items (hence the word ‘set’). We can create a simple k-

shingling function in Python like so: 

In[1]: 

a = "flying fish flew by the space station" 

b = "we will not allow you to bring your pet armadillo along" 

c = "he figured a few sticks of dynamite were easier than a fishing pole to catch fish" 

In[2]: 



def shingle(text: str, k: int): 

    shingle_set = [] 

    for i in range(len(text) - k+1): 

        shingle_set.append(text[i:i+k]) 

    return set(shingle_set) 

In[3]: 

a = shingle(a, k) 

b = shingle(b, k) 

c = shingle(c, k) 

print(a) 

Out[3]: 

{'y ', 'pa', 'ng', 'yi', 'st', 'sp', 'ew', 'ce', 'th', 'sh', 'fe', 'e ', 'ta', 'fl', ' b', 'in', 'w ', ' s', ' t', 'he', ' f', 'ti', 

'fi', 'is', 'on', 'ly', 'g ', 'at', 'by', 'h ', 'ac', 'io'} 

And with this, we have our shingles. Next, we create our sparse vectors. To do this, we first 

need to union all of our sets to create one big set containing all of the shingles across all of 

our sets — we call this the vocabulary (or vocab). 

 

All of our shingled sets are merged to create our vocab. 

We use this vocab to create our sparse vector representations of each set. All we do is create 

an empty vector full of zeros and the same length as our vocab — then, we look at which 

shingles appear in our set. 



 

To create our one-hot encoding our single shingle set is matched up to our vocab which 

indicates where in our zero vector we should place ones (we use a shingle-to-index dictionary 

in our code). 

For every shingle that appears, we identify the position of that shingle in our vocab and set 

the respective position in our new zero-vector to 1. Some of you may recognize this as one-

hot encoding. 

Minhashing 

Minhashing is the next step in our process, allowing us to convert our sparse vectors into 

dense vectors. Now, as a pre-warning — this part of the process can seem confusing initially 

— but it’s very simple once you get it. 

We have our sparse vectors, and what we do is randomly generate one minhash function for 

every position in our signature (e.g., the dense vector). 

So, if we wanted to create a dense vector/signature of 20 numbers — we would use 20 

minhash functions. 

Now, those MinHash functions are simply a randomized order of numbers — and we count 

from 1 to the final number (which is len(vocab)). Because the order of these numbers has 

been randomized, we may find that number *1 *is in position 57 (for example) of our 

randomized MinHash function. 

Our signature values are created by first taking a randomly permuted count vector (from 1 to 

len(vocab)+1) and finds the minimum number that aligns with a 1 in our sparse vector. 

Above, we’re using a smaller vocab containing six values so we can easily visualize the 

process. 



We look at our sparse vector and say, “did this shingle at vocab[1] exist in our set?”. If it did 

— the sparse vector value will be 1 — in this case, it did not exist (hence the 0 value). So, we 

move to number 2, identify its position (0) and ask the same question. This time, the answer 

is yes, and so our minhash output is 2. 

That’s how we produce one value in our minhash signature. But we need to produce 20 (or 

more) of these values. So, we assign a different minhash function to each signature position 

— and repeat the process. 

 

Here we using four minhash functions/vectors to create a four-digit signature vector. If you 

count (from one) in each minhash function, and identify the first value that aligns with a one 

in the sparse vector — you will get 2412. 

At the end of this, we produce our minhash signature — or dense vector. 

Let’s go ahead and write that in code. We have three steps: 

1. Generate a randomized MinHash vector.** 

In[10]: 

hash_ex = list(range(1, len(vocab)+1)) 

print(hash_ex)  # we haven't shuffled yet 

Out[10]: 

[1, 2, 3, 4, 5 ... 99, 100, 101, 102] 

In[11]: 

from random import shuffle 



 

shuffle(hash_ex) 

print(hash_ex) 

Out[11]: 

[63, 7, 94, 16, 36 ... 6, 55, 80, 56] 

2. Loop through this randomized MinHash vector (starting at 1), and match the index of each 

value to the equivalent values in the sparse vector a_1hot. If we find a 1 — that index is our 

signature value. 

In[12]: 

print(f"7 -> {hash_ex.index(7)}"). # note that value 7 can be found at index 1 in hash_ex 

Out[12]: 

7 -> 1 

We now have a randomized list of integers which we can use in creating our *hashed* 

signatures. What we do now is begin counting from `1` through to `len(vocab) + 1`, 

extracting the position of this number in our new `hash_ex` list, like so: 

In[13]: 

for i in range(1, 5): 

    print(f"{i} -> {hash_ex.index(i)}") 

Out[13]: 

1 -> 58 

2 -> 19 

3 -> 96 

4 -> 92 

What we do with this is count up from `1` to `len(vocab) + 1` and find if the resultant 

`hash_ex.index(i)` position in our one-hot encoded vectors contains a positive value (`1`) in 

that position, like so: 

In[14]: 

for i in range(1, len(vocab)+1): 

    idx = hash_ex.index(i) 

    signature_val = a_1hot[idx] 

    print(f"{i} -> {idx} -> {signature_val}") 



    if signature_val == 1: 

        print('match!') 

        break 

Out[14]: 

1 -> 58 -> 0 

2 -> 19 -> 0 

3 -> 96 -> 0 

4 -> 92 -> 0 

5 -> 83 -> 0 

6 -> 98 -> 1 

match! 

3. Build a signature from multiple iterations of 1 and 2 (we’ll formalize the code from above 

into a few easier to use functions): 

In[15]: 

def create_hash_func(size: int): 

    # function for creating the hash vector/function 

    hash_ex = list(range(1, len(vocab)+1)) 

    shuffle(hash_ex) 

    return hash_ex 

 

def build_minhash_func(vocab_size: int, nbits: int): 

    # function for building multiple minhash vectors 

    hashes = [] 

    for _ in range(nbits): 

        hashes.append(create_hash_func(vocab_size)) 

    return hashes 

 

# we create 20 minhash vectors 

minhash_func = build_minhash_func(len(vocab), 20) 



In[16]: 

def create_hash(vector: list): 

    # use this function for creating our signatures (eg the matching) 

    signature = [] 

    for func in minhash_func: 

        for i in range(1, len(vocab)+1): 

            idx = func.index(i) 

            signature_val = vector[idx] 

            if signature_val == 1: 

                signature.append(idx) 

                break 

    return signature 

In[17]: 

# now create signatures 

a_sig = create_hash(a_1hot) 

b_sig = create_hash(b_1hot) 

c_sig = create_hash(c_1hot) 

 

print(a_sig) 

print(b_sig) 

Out[17]: 

[44, 21, 73, 14, 2, 13, 62, 70, 17, 5, 12, 86, 21, 18, 10, 10, 86, 47, 17, 78] 

[97, 96, 57, 82, 43, 67, 75, 24, 49, 28, 67, 56, 96, 18, 11, 85, 86, 19, 65, 75] 

And that is MinHashing — it’s really nothing more complex than that. We’ve taken a sparse 

vector and compressed it into a more densely packed, 20-number signature. 

Information Transfer from Sparse to Signature 

Is the information truly maintained between our much larger sparse vector and much smaller 

dense vector? It’s not easy for us to visually identify a pattern in these new dense vectors — 

but we can calculate the similarity between vectors. 



If the information truly has been retained during our downsizing — surely the similarity 

between vectors will be similar too? 

Well, we can test that. We use Jaccard similarity to calculate the similarity between our 

sentences in shingle format — then repeat for the same vectors in signature format: 

In[16]: 

def jaccard(a: set, b: set): 

    return len(a.intersection(b)) / len(a.union(b)) 

In[17]: 

jaccard(a, b), jaccard(set(a_sig), set(b_sig)) 

Out[17]: 

(0.14814814814814814, 0.10344827586206896) 

In[18]: 

jaccard(a, c), jaccard(set(a_sig), set(c_sig)) 

Out[18]: 

(0.22093023255813954, 0.13793103448275862) 

We see pretty close similarity scores for both — so it seems that the information is retained. 

Let’s try again for b and c: 

In[19]: 

jaccard(b, c), jaccard(set(b_sig), set(c_sig)) 

Out[19]: 

(0.45652173913043476, 0.34615384615384615) 

Here we find much higher similarity, as we would expect — it looks like the similarity 

information is maintained between our sparse vectors and signatures! So, we’re now fully 

prepared to move onto the LSH process. 

 

Band and Hash 

The final step in identifying similar sentences is the LSH function itself. 

We will be taking the banding approach to LSH — which we could describe as the traditional 

method. It will be taking our signatures, hashing segments of each signature, and looking for 

hash collisions — as we described earlier in the article. 



 

A high-level view of the signature-building process. We take our text, build a shingle set, 

one-hot encode it using our vocab, and process it through our minhashing process. 

Through this method, we produce these vectors of equal length that contain positive integer 

values in the range of 1 → len(vocab) — these are the signatures that we typically input 

into this LSH algorithm. 

Now, if we were to hash each of these vectors as a whole, we may struggle to build a hashing 

function that accurately identifies similarity between them — we don’t require that the full 

vector is equal, only that parts of it are similar. 

In most cases, even though parts of two vectors may match perfectly — if the remainder of 

the vectors are not equal, the function will likely hash them into separate buckets. 

We don’t want this. We want signatures that share even some similarity to be hashed into the 

same bucket , thus being identified as candidate pairs. 

How it Works 

The banding method solves this problem by splitting our vectors into sub-parts 

called bands b. Then, rather than processing the full vector through our hash function, we 

pass each band of our vector through a hash function. 

Imagine we split a 100-dimensionality vector into 20 bands. That gives us 20 opportunities to 

identify matching sub-vectors between our vectors. 



 

We split our signature into b sub-vectors, each is processed through a hash function (we can 

use a single hash function, or b hash functions) and mapped to a hash bucket. 

We can now add a more flexible condition — given a collision between any two sub-vectors, 

we consider the respective full vectors as candidate pairs. 

 

We split the signatures into subvectors. Each equivalent subvector across all signatures must 

be processed through the same hash function. However, it is not necessary to use different 

hash functions for each subvector (we can use just one hash function for them all). 



Now, only part of the two vectors must match for us to consider them. But of course, this also 

increases the number of false positives (samples that we mark as candidate matches where 

they are not similar). However, we do try to minimize these as far as possible. 

We can implement a simple version of this. First, we start by splitting our signature 

vectors a, b, and c: 

In[15]: 

def split_vector(signature, b): 

    assert len(signature) % b == 0 

    r = int(len(signature) / b) 

    # code splitting signature in b parts 

    subvecs = [] 

    for i in range(0, len(signature), r): 

        subvecs.append(signature[i : i+r]) 

    return subvecs 

Split into 10 bands, creating rows of `2` 

In[16]: 

band_a = split_vector(a_sig, 10) 

band_b = split_vector(b_sig, 10) 

band_b 

Out[16]: 

[[42, 43], 

 [69, 55], 

 [29, 96], 

 [86, 46], 

 [92, 5], 

 [72, 65], 

 [29, 5], 

 [53, 33], 

 [40, 94], 

 [96, 70]] 



In[17]: 

band_c = split_vector(c_sig, 10) 

band_c 

Out[17]: 

[[90, 43], 

 [69, 55], 

 [4, 101], 

 [35, 15], 

 [92, 22], 

 [18, 65], 

 [40, 18], 

 [53, 33], 

 [40, 94], 

 [80, 14]] 

Then we loop through the lists to identify any matches between sub-vectors. If we 

find any matches — we take those vectors as candidate pairs. 

In[18]: 

for b_rows, c_rows in zip(band_b, band_c): 

    if b_rows == c_rows: 

        print(f"Candidate pair: {b_rows} == {c_rows}") 

        # we only need one band to match 

        break 

Out[18]: 

Candidate pair: [69, 55] == [69, 55] 

And let's do the same for **a**. 

In[20]: 

for a_rows, b_rows in zip(band_a, band_b): 

    if a_rows == b_rows: 

        print(f"Candidate pair: {a_rows} == {b_rows}") 



        # we only need one band to match 

        break 

In[21]: 

for a_rows, c_rows in zip(band_a, band_c): 

    if a_rows == c_rows: 

        print(f"Candidate pair: {b_rows} == {c_rows}") 

        # we only need one band to match 

        break 

We find that our two more similar sentences, b, and **c **— are identified as candidate 

pairs. The less similar of the trio, a — is not identified as a candidate. This is a good result, 

but if we want to really test LSH, we will need to work with more data. 

 

Testing LSH 

What we have built thus far is a very inefficient implementation — if you want to implement 

LSH, this is certainly not the way to do it. Rather, use a library built for similarity search — 

like Faiss, or a managed solution like Pinecone. 

But working through the code like this should — if nothing else — make it clear how LSH 

works. However, we will now be replicating this for much more data, so we will rewrite what 

we have so far using Numpy. 

The code will function in the same way — and you can find each of the functions (alongside 

explanations) in this notebook. 

Getting Data 

First, we need to get data. There is a great repository here that contains several datasets built 

for similarity search testing. We will be extracting a set of sentences from here. 

In[1]: 

import requests 

import pandas as pd 

import io 

 

url = "https://raw.githubusercontent.com/brmson/dataset-

sts/master/data/sts/sick2014/SICK_train.txt" 

 

https://www.pinecone.io/learn/series/faiss/
https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb
https://github.com/brmson/dataset-sts
https://github.com/brmson/dataset-sts/blob/master/data/sts/sick2014/SICK_train.txt


text = requests.get(url).text 

 

data = pd.read_csv(io.StringIO(text), sep='\t') 

data.head() 

Out[1]: 

   pair_ID                                         sentence_A  \ 

0        1  A group of kids is playing in a yard and an ol...    

1        2  A group of children is playing in the house an...    

2        3  The young boys are playing outdoors and the ma...    

3        5  The kids are playing outdoors near a man with ...    

4        9  The young boys are playing outdoors and the ma...    

 

                                          sentence_B  relatedness_score  \ 

0  A group of boys in a yard is playing and a man...                4.5    

1  A group of kids is playing in a yard and an ol...                3.2    

2  The kids are playing outdoors near a man with ...                4.7    

3  A group of kids is playing in a yard and an ol...                3.4    

4  A group of kids is playing in a yard and an ol...                3.7    

 

  entailment_judgment   

0             NEUTRAL   

1             NEUTRAL   

2          ENTAILMENT   

3             NEUTRAL   

4             NEUTRAL   

In[2]: 

sentences = data['sentence_A'].tolist() 

sentences[:3] 

Out[2]: 



['A group of kids is playing in a yard and an old man is standing in the background', 

 'A group of children is playing in the house and there is no man standing in the background', 

 'The young boys are playing outdoors and the man is smiling nearby'] 

Shingles 

Once we have our data, we can create our one-hot encodings — this time stored as a NumPy 

array (find full code and functions here). 

In[4]: 

k = 8  # shingle size 

 

# build shingles 

shingles = [] 

for sentence in sentences: 

    shingles.append(build_shingles(sentence, k)) 

 

# build vocab 

vocab = build_vocab(shingles) 

 

# one-hot encode our shingles 

shingles_1hot = [] 

for shingle_set in shingles: 

    shingles_1hot.append(one_hot(shingle_set, vocab)) 

# stack into single numpy array 

shingles_1hot = np.stack(shingles_1hot) 

shingles_1hot.shape 

Out[4]: 

(4500, 36466) 

In[5]: 

shingles_1hot[:5] 

Out[5]: 

https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb


array([[0., 0., 0., ..., 0., 0., 0.], 

       [0., 0., 0., ..., 0., 0., 0.], 

       [0., 0., 0., ..., 0., 0., 0.], 

       [0., 0., 0., ..., 0., 0., 0.], 

       [0., 0., 0., ..., 0., 0., 0.]]) 

In[6]: 

sum(shingles_1hot[0])  # confirm we have 1s 

Out[6]: 

73.0 

Now we have our one-hot encodings. The shingles_1hot array contains *4500 *sparse 

vectors, where each vector is of length 36466. 

MinHashing 

As before, we will compress our sparse vectors into dense vector ‘signatures’ with 

minhashing. Again, we will be using our NumPy implementation, which you can find the full 

code here. 

In[8]: 

arr = minhash_arr(vocab, 100) 

 

signatures = [] 

 

for vector in shingles_1hot: 

    signatures.append(get_signature(arr, vector)) 

 

# merge signatures into single array 

signatures = np.stack(signatures) 

signatures.shape 

Out[8]: 

(4500, 100) 

In[9]: 

signatures[0] 



Out[9]: 

array([  65,  438,  534, 1661, 1116,  200, 1206,  583,  141,  766,   92, 

         52,    7,  287,  587,   65,  135,  581,  136,  838, 1293,  706, 

         31,  414,  374,  837,   72, 1271,  872, 1136,  201, 1109,  409, 

        384,  405,  293,  279,  901,   11,  904, 1480,  763, 1610,  518, 

        184,  398,  128,   49,  910,  902,  263,   80,  608,   69,  185, 

       1148, 1004,   90,  547, 1527,  139,  279, 1063,  646,  156,  357, 

        165,    6,   63,  269,  103,   52,   55,  908,  572,  613,  213, 

        932,  244,   64,  178,  372,  115,  427,  244,  263,  944,  148, 

         55,   63,  232, 1266,  371,  289,  107,  413,  563,  613,   65, 

        188]) 

We’ve compressed our sparse vectors from a length of 36466 to signatures of length 100. A 

big difference, but as we demonstrated earlier, this compression technique retains similarity 

information very well. 

LSH 

Finally, onto the LSH portion. We will use a Python dictionary here to hash and store our 

candidate pairs — again. The full code is here. 

In[11]: 

b = 20 

 

lsh = LSH(b) 

 

for signature in signatures: 

    lsh.add_hash(signature) 

In[12]: 

lsh.buckets 

Out[12]: 

[{'65,438,534,1661,1116': [0], 

  '65,2199,534,806,1481': [1], 

  '312,331,534,1714,575': [2, 4], 

https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb


  '941,331,534,466,75': [3], 

  ... 

  '5342,1310,335,566,211': [1443, 1444], 

  '1365,722,3656,1857,1023': [1445], 

  '393,858,2770,1799,772': [1446], 

  ...}] 

It’s important to note that our lsh.buckets variable actually contains a separate dictionary for 

each band — we do not mix buckets between different bands. 

We see in our buckets the vector IDs (row numbers) , so all we need to do to extract our 

candidate pairs is loop through all buckets and extract pairs. 

In[12]: 

candidate_pairs = lsh.check_candidates() 

len(candidate_pairs) 

Out[12]: 

7243 

In[14]: 

list(candidate_pairs)[:5] 

Out[14]: 

[(1646, 1687), (3234, 3247), (1763, 2235), (2470, 2622), (3877, 3878)] 

After identifying our candidate pairs, we would restrict our similarity calculations to those 

pairs only — we will find that some will be within our similarity threshold, and others will 

not. 

The objective here is to restrict our scope and reduce search complexity while still 

maintaining high accuracy in identifying pairs. 

We can visualize our performance here by measuring the candidate pair classification (1 or 0) 

against actual cosine (or Jaccard) similarity. 

https://www.pinecone.io/learn/semantic-search/


 

Chart showing the distribution of candidate-pairs (1s) and non-candidates (0s) against the 

cosine similarity of pair signatures. 

Now, this may seem like a strange way to visualize our performance — and you are correct, 

it is — but we do have a reason. 

Optimizing the Bands 

It is possible to optimize our band value b to shift the similarity threshold of our LSH 

function. The similarity threshold is the point at which we would like our LSH function to 

switch from a non-candidate to a candidate pair. 

We formalize this probability-similarity relationship as so: 

 

Probability (P) of a pair being identified as candidate pairs given a similarity score (s), 

number of bands (b), and number of rows in each band (r). 

Now, if we were to visualize this probability-similarity relationship for our current b and r 

values we should notice a pattern: 



 

Candidate classification (left y-axis) and calculated probability P (right y-axis) against 

similarity (calculated or normalized cosine similarity). This shows that our calculated 

probability **P **and similarity s values indicate the general distribution of candidate/non-

candidate pairs. The b and r values are 20 and 5 respectively. 

Although the alignment isn’t perfect, we can see a correlation between the theoretical, 

calculated probability — and the genuine candidate pair results. Now, we can push the 

probability of returning candidate-pairs at different similarity scores left or right by 

modifying b: 

 



Calculated probability P against similarity s for different b values. Note that r will be 

len(signature) / b (in this case len(signature) == 100). 

These are our calculated probability values. If we decided that our previous results where b 

== 20 required too high a similarity to count pairs as candidate pairs — we would attempt to 

shift the similarity threshold to the left. 

Looking at this graph, a b value of 25 looks like it could shift our genuine results just enough. 

So, let’s visualize our results when using b == 25: 

 

Results for real and simulated results when b == 25 are displayed with blue and magenta. Our 

previous LSH results (teal) are displayed for comparison. Note that this has created more 

candidate pairs. 

Because we are now returning more candidate pairs, this will naturally result in more false 

positives — where we return ‘candidate pair’ for dissimilar vectors. This is an unavoidable 

consequence of modifying b, which we can visualize as: 



 

Increasing b (shifting left) increases FPs while decreasing FNs. 

Great! We’ve built our LSH process from scratch — and even managed to tune our similarity 

threshold. 

That’s everything for this article on the principles of LSH. Not only have we covered LSH, 

but also shingling and the MinHash function! 

In practice, we would most likely want to implement LSH using libraries built specifically for 

similarity search. We will be covering LSH — specifically the random projection method — 

in much more detail, alongside its implementation in Faiss. 

However, if you’d prefer a quick rundown of some of the key indexes (and their 

implementations) in similarity search, we cover them all in our overview of vector indexes. 

 

https://www.pinecone.io/learn/series/faiss/vector-indexes/

