
Min Hash and Jaccard similarity, Locality-sensitive hashing (LSH),

Application: document similarity, recommendation engines

Jaccard Similarity Coefficient

Jaccard Similarity Coefficient quantifies how similar two finite sets really are and is defined

as the size of their intersection divided by the size of their union. This similarity measure is

very intuitive and we can clearly see that it is a real-valued measure bounded in the

interval [0, 1].

The coefficient is 0 when the two sets are mutually exclusive (disjoint) and it is 1 when the

sets are equal. Below we see the one-line python function that computes this similarity

measure.

def similarity_jaccard(a: set, b: set) -> float:

 return len(a.intersection(b)) / len(a.union(b))

Jaccard Similarity Coefficient as Probability

Jaccard Coefficient can also be interpreted as the probability that an element picked at

random from the universal set U is present in both sets A and B.

Another analogy for this probability is the chances of throwing a dart and it hitting the

intersection. Thus we see how we can transform the Jaccard Similarity Coefficient into a

simple probability statement. This will come in very handy when we try to optimize the

computation at scale.

Problem at Scale

Computing Jaccard Similarity Coefficient is very simple, all we require is a union operation

and an intersection operation on the participating sets. But these computations go haywire

when things run at scale.

Computing set similarity is usually a subproblem fitting in a bigger picture, for example,

near-duplicate detection which finds near-duplicate articles across millions of documents.

When we tokenize the documents and apply raw Jaccard Similarity Coefficient for every two

combinations of documents we find that the computation will take years.

Instead of finding the true value for this coefficient, we can rely on an approximation if we

can get a considerable speedup and this is where a technique called MinHash fits well.

MinHash

MinHash algorithm gives us a fast approximation to the Jaccard Similarity Coefficient

between any two finite sets. Instead of computing the unions and the intersections every

single time, this method once creates MinHash Signature for each set and use it to

approximate the coefficient.

Computing single MinHash

MinHash h of the set S is the index of the first element, from a permuted Universal Set, that

is present in the set S. But since permutation is a computation heavy operation especially for

large sets we use a hashing/mapping function that typically reorders the elements using

simple math operation. One such hashing function is

If u is the total number of elements in the Universal Set U then a and b are the random

integers less than u and c is the prime number slightly higher than u. A sample permute

function could be

def permute_fn(x: int) -> int:

 return (23 * x + 67) % 199

Now that we have defined permutation as a simple mathematical operation that spits out the

new row index, we can find MinHash of a set as the element that has the minimum new row

number. Hence we can define the MinHash function as

def minhash(s: set) -> int:

 return min([permute_fn(e) for e in s])

https://mccormickml.com/2015/06/12/minhash-tutorial-with-python-code/

A surprising property of MinHash

MinHash has a surprising property, according to which, the probability that the MinHash of

random permutation produces the same value for the two sets equals the Jaccard Similarity

Coefficient of those sets.

The above equality holds true because the probability of MinHash of two sets to be the same

is the number of elements present in both the sets divided by the total number of elements in

both the sets combined; which in fact is the definition of Jaccard Similarity Coefficient.

Hence to approximate Similarity Coefficient using MinHash all we have to do is find the

Probability of MinHash of two sets to be the same, and this is where the MinHash Signature

comes in to play.

MinHash Signature

MinHash Signature of a set S is a collection of k MinHash values corresponding to k different

MinHash functions. The size k depends on the error tolerance, keeping it higher leads to more

accurate approximations.

def minhash_signature(s: set):

 return [minhash(s) for minhash in minhash_fns]

MinHash functions usually differ in the permutation parameters i.e. coefficients a, b and c.

Now in order to compute Pr[h(A) = h(B)] we have to compare the MinHash Signature of the

participating sets A and B and find how many values in their signatures match; dividing this

number by the number of hash functions k will give the required probability and in turn an

approximation of Jaccard Similarity Coefficient.

def similarity_minhash(a: set, b: set) -> float:

 sign_a = minhash_signature(a)

 sign_b = minhash_signature(b)

 return sum([1 for a, b in zip(sign_a, sign_b) if a == b]) / len(sign_a)

MinHash Signature could well be computed just once per set.

Thus to compute set similarity, we need not perform heavy computation like Union and

Intersection and that too across millions of sets at scale, rather we can simply

compare k items of in their signatures and get a fairly good estimate of it.

How good is the estimate?

In order to find how close the estimate is we compute the Jaccard Similarity Coefficient and

its approximate using MinHash on two disjoint sets having equal cardinality. One of the sets

will undergo a transition where one element of it will be replaced with one element of the

other set. So with time, the sets will go from disjoint to being equal.

The illustration above shows the two plots and we can clearly see that the MinHash technique

provides a fairly good estimate of Jaccard Similarity Coefficient with much fewer

computations

Jaccard Coefficient vs MinHash

While both methods aim to measure set similarity, their characteristics differ:

Aspect Jaccard Coefficient MinHash

Accuracy Exact Approximate

Computational Cost High for large sets Lower, depends on the number of hash functions

Use Case Small to medium datasets Large-scale datasets

Locality Sensitive Hashing (LSH): The Illustrated Guide

Locality sensitive hashing (LSH) is a widely popular technique used in approximate nearest

neighbor (ANN) search. The solution to efficient similarity search is a profitable one — it is

at the core of several billion (and even trillion) dollar companies.

Big names like Google, Netflix, Amazon, Spotify, Uber, and countless more rely on

similarity search for many of their core functions.

Amazon uses similarity search to compare customers, finding new product recommendations

based on the purchasing history of their highest-similarity customers.

Every time you use Google, you perform a similarity search between your query/search term

— and Google’s indexed internet.

If Spotify manages to recommend good music, it’s because their similarity search algorithms

are successfully matching you to other customers with a similarly good (or not so good) taste

in music.

LSH is one of the original techniques for producing high quality search, while maintaining

lightning fast search speeds. In this article we will work through the theory behind the

algorithm, alongside an easy-to-understand implementation in Python!

You can find a video walkthrough of this article here:

Search Complexity

Imagine a dataset containing millions or even billions of samples — how can we efficiently

compare all of those samples?

Even on the best hardware, comparing all pairs is out of the question. This produces an at

best complexity of O(n²). Even if comparing a single query against the billions of samples,

we still return an at best complexity of O(n).

We also need to consider the complexity behind a single similarity calculation — every

sample is stored as a vector, often very highly-dimensional vectors — this increases our

complexity even further.

How can we avoid this? Is it even possible to perform a search with sub-linear

complexity? Yes, it is!

The solution is approximate search. Rather than comparing every vector (exhaustive search)

— we can approximate and limit our search scope to only the most relevant vectors.

LSH is one algorithm that provides us with those sub-linear search times. In this article, we

will introduce LSH and work through the logic behind the magic.

Locality Sensitive Hashing

When we consider the complexity of finding similar pairs of vectors, we find that the number

of calculations required to compare everything is unmanageably enormous even with

reasonably small datasets.

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

Let’s consider a vector index. If we were to introduce just one new vector and attempt to find

the closest match — we must compare that vector to every other vector in our database. This

gives us a linear time complexity — which cannot scale to fast search in larger datasets.

The problem is even worse if we wanted to compare all of those vectors against each other —

the optimal approach sorting method to achieve this is at best log-linear time complexity.

So we need a way to reduce the number of comparisons. Ideally, we want only to compare

vectors that we believe to be potential matches — or candidate pairs.

Locality sensitive hashing (LSH) allows us to do this.

LSH consists of a variety of different methods. In this article, we’ll be covering the

traditional approach — which consists of multiple steps — shingling, MinHashing, and the

final banded LSH function.

At its core, the final LSH function allows us to segment and hash the same sample several

times. And when we find that a pair of vectors has been hashed to the same value at least

once , we tag them as candidate pairs — that is, potential matches.

It is a very similar process to that used in Python dictionaries. We have a key-value pair

which we feed into the dictionary. The key is processed through the dictionary hash function

and mapped to a specific bucket. We then connect the respective value to this bucket.

A typical hash function aims to place different values (no matter how similar) into separate

buckets.

However, there is a key difference between this type of hash function and that used in LSH.

With dictionaries, our goal is to minimize the chances of multiple key-values being mapped

to the same bucket — we minimize collisions.

LSH is almost the opposite. In LSH, we want to maximize collisions — although ideally only

for similar inputs.

An LSH function aims to place similar values into the same buckets.

There is no single approach to hashing in LSH. Indeed, they all share the same ‘bucket

similar samples through a hash function’ logic , but they can vary a lot beyond this.

The method we have briefly described and will be covering throughout the remainder of this

article could be described as the traditional approach, using shingling, MinHashing,

and banding.

There are several other techniques, such as Random Projection which we cover in another

article.

Shingling, MinHashing, and LSH

The LSH approach we’re exploring consists of a three-step process. First, we convert text to

sparse vectors using k-shingling (and one-hot encoding), then use minhashing to create

‘signatures’ — which are passed onto our LSH process to weed out candidate pairs.

https://www.pinecone.io/learn/series/faiss/locality-sensitive-hashing-random-projection/

A high-level view of the LSH process we will be working through in this article.

We will discuss some of the other LSH methods in future articles. But for now, let’s work

through the traditional process in more depth.

k-Shingling

k-Shingling, or simply shingling — is the process of converting a string of text into a set of

‘shingles’. The process is similar to moving a window of length k down our string of text and

taking a picture at each step. We collate all of those pictures to create our set of shingles.

k-Shingling consists of moving through a string and adding k characters at a time to a

‘shingle set’.

Shingling also removes duplicate items (hence the word ‘set’). We can create a simple k-

shingling function in Python like so:

In[1]:

a = "flying fish flew by the space station"

b = "we will not allow you to bring your pet armadillo along"

c = "he figured a few sticks of dynamite were easier than a fishing pole to catch fish"

In[2]:

def shingle(text: str, k: int):

 shingle_set = []

 for i in range(len(text) - k+1):

 shingle_set.append(text[i:i+k])

 return set(shingle_set)

In[3]:

a = shingle(a, k)

b = shingle(b, k)

c = shingle(c, k)

print(a)

Out[3]:

{'y ', 'pa', 'ng', 'yi', 'st', 'sp', 'ew', 'ce', 'th', 'sh', 'fe', 'e ', 'ta', 'fl', ' b', 'in', 'w ', ' s', ' t', 'he', ' f', 'ti',

'fi', 'is', 'on', 'ly', 'g ', 'at', 'by', 'h ', 'ac', 'io'}

And with this, we have our shingles. Next, we create our sparse vectors. To do this, we first

need to union all of our sets to create one big set containing all of the shingles across all of

our sets — we call this the vocabulary (or vocab).

All of our shingled sets are merged to create our vocab.

We use this vocab to create our sparse vector representations of each set. All we do is create

an empty vector full of zeros and the same length as our vocab — then, we look at which

shingles appear in our set.

To create our one-hot encoding our single shingle set is matched up to our vocab which

indicates where in our zero vector we should place ones (we use a shingle-to-index dictionary

in our code).

For every shingle that appears, we identify the position of that shingle in our vocab and set

the respective position in our new zero-vector to 1. Some of you may recognize this as one-

hot encoding.

Minhashing

Minhashing is the next step in our process, allowing us to convert our sparse vectors into

dense vectors. Now, as a pre-warning — this part of the process can seem confusing initially

— but it’s very simple once you get it.

We have our sparse vectors, and what we do is randomly generate one minhash function for

every position in our signature (e.g., the dense vector).

So, if we wanted to create a dense vector/signature of 20 numbers — we would use 20

minhash functions.

Now, those MinHash functions are simply a randomized order of numbers — and we count

from 1 to the final number (which is len(vocab)). Because the order of these numbers has

been randomized, we may find that number *1 *is in position 57 (for example) of our

randomized MinHash function.

Our signature values are created by first taking a randomly permuted count vector (from 1 to

len(vocab)+1) and finds the minimum number that aligns with a 1 in our sparse vector.

Above, we’re using a smaller vocab containing six values so we can easily visualize the

process.

We look at our sparse vector and say, “did this shingle at vocab[1] exist in our set?”. If it did

— the sparse vector value will be 1 — in this case, it did not exist (hence the 0 value). So, we

move to number 2, identify its position (0) and ask the same question. This time, the answer

is yes, and so our minhash output is 2.

That’s how we produce one value in our minhash signature. But we need to produce 20 (or

more) of these values. So, we assign a different minhash function to each signature position

— and repeat the process.

Here we using four minhash functions/vectors to create a four-digit signature vector. If you

count (from one) in each minhash function, and identify the first value that aligns with a one

in the sparse vector — you will get 2412.

At the end of this, we produce our minhash signature — or dense vector.

Let’s go ahead and write that in code. We have three steps:

1. Generate a randomized MinHash vector.**

In[10]:

hash_ex = list(range(1, len(vocab)+1))

print(hash_ex) # we haven't shuffled yet

Out[10]:

[1, 2, 3, 4, 5 ... 99, 100, 101, 102]

In[11]:

from random import shuffle

shuffle(hash_ex)

print(hash_ex)

Out[11]:

[63, 7, 94, 16, 36 ... 6, 55, 80, 56]

2. Loop through this randomized MinHash vector (starting at 1), and match the index of each

value to the equivalent values in the sparse vector a_1hot. If we find a 1 — that index is our

signature value.

In[12]:

print(f"7 -> {hash_ex.index(7)}"). # note that value 7 can be found at index 1 in hash_ex

Out[12]:

7 -> 1

We now have a randomized list of integers which we can use in creating our *hashed*

signatures. What we do now is begin counting from `1` through to `len(vocab) + 1`,

extracting the position of this number in our new `hash_ex` list, like so:

In[13]:

for i in range(1, 5):

 print(f"{i} -> {hash_ex.index(i)}")

Out[13]:

1 -> 58

2 -> 19

3 -> 96

4 -> 92

What we do with this is count up from `1` to `len(vocab) + 1` and find if the resultant

`hash_ex.index(i)` position in our one-hot encoded vectors contains a positive value (`1`) in

that position, like so:

In[14]:

for i in range(1, len(vocab)+1):

 idx = hash_ex.index(i)

 signature_val = a_1hot[idx]

 print(f"{i} -> {idx} -> {signature_val}")

 if signature_val == 1:

 print('match!')

 break

Out[14]:

1 -> 58 -> 0

2 -> 19 -> 0

3 -> 96 -> 0

4 -> 92 -> 0

5 -> 83 -> 0

6 -> 98 -> 1

match!

3. Build a signature from multiple iterations of 1 and 2 (we’ll formalize the code from above

into a few easier to use functions):

In[15]:

def create_hash_func(size: int):

 # function for creating the hash vector/function

 hash_ex = list(range(1, len(vocab)+1))

 shuffle(hash_ex)

 return hash_ex

def build_minhash_func(vocab_size: int, nbits: int):

 # function for building multiple minhash vectors

 hashes = []

 for _ in range(nbits):

 hashes.append(create_hash_func(vocab_size))

 return hashes

we create 20 minhash vectors

minhash_func = build_minhash_func(len(vocab), 20)

In[16]:

def create_hash(vector: list):

 # use this function for creating our signatures (eg the matching)

 signature = []

 for func in minhash_func:

 for i in range(1, len(vocab)+1):

 idx = func.index(i)

 signature_val = vector[idx]

 if signature_val == 1:

 signature.append(idx)

 break

 return signature

In[17]:

now create signatures

a_sig = create_hash(a_1hot)

b_sig = create_hash(b_1hot)

c_sig = create_hash(c_1hot)

print(a_sig)

print(b_sig)

Out[17]:

[44, 21, 73, 14, 2, 13, 62, 70, 17, 5, 12, 86, 21, 18, 10, 10, 86, 47, 17, 78]

[97, 96, 57, 82, 43, 67, 75, 24, 49, 28, 67, 56, 96, 18, 11, 85, 86, 19, 65, 75]

And that is MinHashing — it’s really nothing more complex than that. We’ve taken a sparse

vector and compressed it into a more densely packed, 20-number signature.

Information Transfer from Sparse to Signature

Is the information truly maintained between our much larger sparse vector and much smaller

dense vector? It’s not easy for us to visually identify a pattern in these new dense vectors —

but we can calculate the similarity between vectors.

If the information truly has been retained during our downsizing — surely the similarity

between vectors will be similar too?

Well, we can test that. We use Jaccard similarity to calculate the similarity between our

sentences in shingle format — then repeat for the same vectors in signature format:

In[16]:

def jaccard(a: set, b: set):

 return len(a.intersection(b)) / len(a.union(b))

In[17]:

jaccard(a, b), jaccard(set(a_sig), set(b_sig))

Out[17]:

(0.14814814814814814, 0.10344827586206896)

In[18]:

jaccard(a, c), jaccard(set(a_sig), set(c_sig))

Out[18]:

(0.22093023255813954, 0.13793103448275862)

We see pretty close similarity scores for both — so it seems that the information is retained.

Let’s try again for b and c:

In[19]:

jaccard(b, c), jaccard(set(b_sig), set(c_sig))

Out[19]:

(0.45652173913043476, 0.34615384615384615)

Here we find much higher similarity, as we would expect — it looks like the similarity

information is maintained between our sparse vectors and signatures! So, we’re now fully

prepared to move onto the LSH process.

Band and Hash

The final step in identifying similar sentences is the LSH function itself.

We will be taking the banding approach to LSH — which we could describe as the traditional

method. It will be taking our signatures, hashing segments of each signature, and looking for

hash collisions — as we described earlier in the article.

A high-level view of the signature-building process. We take our text, build a shingle set,

one-hot encode it using our vocab, and process it through our minhashing process.

Through this method, we produce these vectors of equal length that contain positive integer

values in the range of 1 → len(vocab) — these are the signatures that we typically input

into this LSH algorithm.

Now, if we were to hash each of these vectors as a whole, we may struggle to build a hashing

function that accurately identifies similarity between them — we don’t require that the full

vector is equal, only that parts of it are similar.

In most cases, even though parts of two vectors may match perfectly — if the remainder of

the vectors are not equal, the function will likely hash them into separate buckets.

We don’t want this. We want signatures that share even some similarity to be hashed into the

same bucket , thus being identified as candidate pairs.

How it Works

The banding method solves this problem by splitting our vectors into sub-parts

called bands b. Then, rather than processing the full vector through our hash function, we

pass each band of our vector through a hash function.

Imagine we split a 100-dimensionality vector into 20 bands. That gives us 20 opportunities to

identify matching sub-vectors between our vectors.

We split our signature into b sub-vectors, each is processed through a hash function (we can

use a single hash function, or b hash functions) and mapped to a hash bucket.

We can now add a more flexible condition — given a collision between any two sub-vectors,

we consider the respective full vectors as candidate pairs.

We split the signatures into subvectors. Each equivalent subvector across all signatures must

be processed through the same hash function. However, it is not necessary to use different

hash functions for each subvector (we can use just one hash function for them all).

Now, only part of the two vectors must match for us to consider them. But of course, this also

increases the number of false positives (samples that we mark as candidate matches where

they are not similar). However, we do try to minimize these as far as possible.

We can implement a simple version of this. First, we start by splitting our signature

vectors a, b, and c:

In[15]:

def split_vector(signature, b):

 assert len(signature) % b == 0

 r = int(len(signature) / b)

 # code splitting signature in b parts

 subvecs = []

 for i in range(0, len(signature), r):

 subvecs.append(signature[i : i+r])

 return subvecs

Split into 10 bands, creating rows of `2`

In[16]:

band_a = split_vector(a_sig, 10)

band_b = split_vector(b_sig, 10)

band_b

Out[16]:

[[42, 43],

 [69, 55],

 [29, 96],

 [86, 46],

 [92, 5],

 [72, 65],

 [29, 5],

 [53, 33],

 [40, 94],

 [96, 70]]

In[17]:

band_c = split_vector(c_sig, 10)

band_c

Out[17]:

[[90, 43],

 [69, 55],

 [4, 101],

 [35, 15],

 [92, 22],

 [18, 65],

 [40, 18],

 [53, 33],

 [40, 94],

 [80, 14]]

Then we loop through the lists to identify any matches between sub-vectors. If we

find any matches — we take those vectors as candidate pairs.

In[18]:

for b_rows, c_rows in zip(band_b, band_c):

 if b_rows == c_rows:

 print(f"Candidate pair: {b_rows} == {c_rows}")

 # we only need one band to match

 break

Out[18]:

Candidate pair: [69, 55] == [69, 55]

And let's do the same for **a**.

In[20]:

for a_rows, b_rows in zip(band_a, band_b):

 if a_rows == b_rows:

 print(f"Candidate pair: {a_rows} == {b_rows}")

 # we only need one band to match

 break

In[21]:

for a_rows, c_rows in zip(band_a, band_c):

 if a_rows == c_rows:

 print(f"Candidate pair: {b_rows} == {c_rows}")

 # we only need one band to match

 break

We find that our two more similar sentences, b, and **c **— are identified as candidate

pairs. The less similar of the trio, a — is not identified as a candidate. This is a good result,

but if we want to really test LSH, we will need to work with more data.

Testing LSH

What we have built thus far is a very inefficient implementation — if you want to implement

LSH, this is certainly not the way to do it. Rather, use a library built for similarity search —

like Faiss, or a managed solution like Pinecone.

But working through the code like this should — if nothing else — make it clear how LSH

works. However, we will now be replicating this for much more data, so we will rewrite what

we have so far using Numpy.

The code will function in the same way — and you can find each of the functions (alongside

explanations) in this notebook.

Getting Data

First, we need to get data. There is a great repository here that contains several datasets built

for similarity search testing. We will be extracting a set of sentences from here.

In[1]:

import requests

import pandas as pd

import io

url = "https://raw.githubusercontent.com/brmson/dataset-

sts/master/data/sts/sick2014/SICK_train.txt"

https://www.pinecone.io/learn/series/faiss/
https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb
https://github.com/brmson/dataset-sts
https://github.com/brmson/dataset-sts/blob/master/data/sts/sick2014/SICK_train.txt

text = requests.get(url).text

data = pd.read_csv(io.StringIO(text), sep='\t')

data.head()

Out[1]:

 pair_ID sentence_A \

0 1 A group of kids is playing in a yard and an ol...

1 2 A group of children is playing in the house an...

2 3 The young boys are playing outdoors and the ma...

3 5 The kids are playing outdoors near a man with ...

4 9 The young boys are playing outdoors and the ma...

 sentence_B relatedness_score \

0 A group of boys in a yard is playing and a man... 4.5

1 A group of kids is playing in a yard and an ol... 3.2

2 The kids are playing outdoors near a man with ... 4.7

3 A group of kids is playing in a yard and an ol... 3.4

4 A group of kids is playing in a yard and an ol... 3.7

 entailment_judgment

0 NEUTRAL

1 NEUTRAL

2 ENTAILMENT

3 NEUTRAL

4 NEUTRAL

In[2]:

sentences = data['sentence_A'].tolist()

sentences[:3]

Out[2]:

['A group of kids is playing in a yard and an old man is standing in the background',

 'A group of children is playing in the house and there is no man standing in the background',

 'The young boys are playing outdoors and the man is smiling nearby']

Shingles

Once we have our data, we can create our one-hot encodings — this time stored as a NumPy

array (find full code and functions here).

In[4]:

k = 8 # shingle size

build shingles

shingles = []

for sentence in sentences:

 shingles.append(build_shingles(sentence, k))

build vocab

vocab = build_vocab(shingles)

one-hot encode our shingles

shingles_1hot = []

for shingle_set in shingles:

 shingles_1hot.append(one_hot(shingle_set, vocab))

stack into single numpy array

shingles_1hot = np.stack(shingles_1hot)

shingles_1hot.shape

Out[4]:

(4500, 36466)

In[5]:

shingles_1hot[:5]

Out[5]:

https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb

array([[0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.]])

In[6]:

sum(shingles_1hot[0]) # confirm we have 1s

Out[6]:

73.0

Now we have our one-hot encodings. The shingles_1hot array contains *4500 *sparse

vectors, where each vector is of length 36466.

MinHashing

As before, we will compress our sparse vectors into dense vector ‘signatures’ with

minhashing. Again, we will be using our NumPy implementation, which you can find the full

code here.

In[8]:

arr = minhash_arr(vocab, 100)

signatures = []

for vector in shingles_1hot:

 signatures.append(get_signature(arr, vector))

merge signatures into single array

signatures = np.stack(signatures)

signatures.shape

Out[8]:

(4500, 100)

In[9]:

signatures[0]

Out[9]:

array([65, 438, 534, 1661, 1116, 200, 1206, 583, 141, 766, 92,

 52, 7, 287, 587, 65, 135, 581, 136, 838, 1293, 706,

 31, 414, 374, 837, 72, 1271, 872, 1136, 201, 1109, 409,

 384, 405, 293, 279, 901, 11, 904, 1480, 763, 1610, 518,

 184, 398, 128, 49, 910, 902, 263, 80, 608, 69, 185,

 1148, 1004, 90, 547, 1527, 139, 279, 1063, 646, 156, 357,

 165, 6, 63, 269, 103, 52, 55, 908, 572, 613, 213,

 932, 244, 64, 178, 372, 115, 427, 244, 263, 944, 148,

 55, 63, 232, 1266, 371, 289, 107, 413, 563, 613, 65,

 188])

We’ve compressed our sparse vectors from a length of 36466 to signatures of length 100. A

big difference, but as we demonstrated earlier, this compression technique retains similarity

information very well.

LSH

Finally, onto the LSH portion. We will use a Python dictionary here to hash and store our

candidate pairs — again. The full code is here.

In[11]:

b = 20

lsh = LSH(b)

for signature in signatures:

 lsh.add_hash(signature)

In[12]:

lsh.buckets

Out[12]:

[{'65,438,534,1661,1116': [0],

 '65,2199,534,806,1481': [1],

 '312,331,534,1714,575': [2, 4],

https://github.com/pinecone-io/examples/blob/master/learn/search/faiss-ebook/locality-sensitive-hashing-traditional/testing_lsh.ipynb

 '941,331,534,466,75': [3],

 ...

 '5342,1310,335,566,211': [1443, 1444],

 '1365,722,3656,1857,1023': [1445],

 '393,858,2770,1799,772': [1446],

 ...}]

It’s important to note that our lsh.buckets variable actually contains a separate dictionary for

each band — we do not mix buckets between different bands.

We see in our buckets the vector IDs (row numbers) , so all we need to do to extract our

candidate pairs is loop through all buckets and extract pairs.

In[12]:

candidate_pairs = lsh.check_candidates()

len(candidate_pairs)

Out[12]:

7243

In[14]:

list(candidate_pairs)[:5]

Out[14]:

[(1646, 1687), (3234, 3247), (1763, 2235), (2470, 2622), (3877, 3878)]

After identifying our candidate pairs, we would restrict our similarity calculations to those

pairs only — we will find that some will be within our similarity threshold, and others will

not.

The objective here is to restrict our scope and reduce search complexity while still

maintaining high accuracy in identifying pairs.

We can visualize our performance here by measuring the candidate pair classification (1 or 0)

against actual cosine (or Jaccard) similarity.

https://www.pinecone.io/learn/semantic-search/

Chart showing the distribution of candidate-pairs (1s) and non-candidates (0s) against the

cosine similarity of pair signatures.

Now, this may seem like a strange way to visualize our performance — and you are correct,

it is — but we do have a reason.

Optimizing the Bands

It is possible to optimize our band value b to shift the similarity threshold of our LSH

function. The similarity threshold is the point at which we would like our LSH function to

switch from a non-candidate to a candidate pair.

We formalize this probability-similarity relationship as so:

Probability (P) of a pair being identified as candidate pairs given a similarity score (s),

number of bands (b), and number of rows in each band (r).

Now, if we were to visualize this probability-similarity relationship for our current b and r

values we should notice a pattern:

Candidate classification (left y-axis) and calculated probability P (right y-axis) against

similarity (calculated or normalized cosine similarity). This shows that our calculated

probability **P **and similarity s values indicate the general distribution of candidate/non-

candidate pairs. The b and r values are 20 and 5 respectively.

Although the alignment isn’t perfect, we can see a correlation between the theoretical,

calculated probability — and the genuine candidate pair results. Now, we can push the

probability of returning candidate-pairs at different similarity scores left or right by

modifying b:

Calculated probability P against similarity s for different b values. Note that r will be

len(signature) / b (in this case len(signature) == 100).

These are our calculated probability values. If we decided that our previous results where b

== 20 required too high a similarity to count pairs as candidate pairs — we would attempt to

shift the similarity threshold to the left.

Looking at this graph, a b value of 25 looks like it could shift our genuine results just enough.

So, let’s visualize our results when using b == 25:

Results for real and simulated results when b == 25 are displayed with blue and magenta. Our

previous LSH results (teal) are displayed for comparison. Note that this has created more

candidate pairs.

Because we are now returning more candidate pairs, this will naturally result in more false

positives — where we return ‘candidate pair’ for dissimilar vectors. This is an unavoidable

consequence of modifying b, which we can visualize as:

Increasing b (shifting left) increases FPs while decreasing FNs.

Great! We’ve built our LSH process from scratch — and even managed to tune our similarity

threshold.

That’s everything for this article on the principles of LSH. Not only have we covered LSH,

but also shingling and the MinHash function!

In practice, we would most likely want to implement LSH using libraries built specifically for

similarity search. We will be covering LSH — specifically the random projection method —

in much more detail, alongside its implementation in Faiss.

However, if you’d prefer a quick rundown of some of the key indexes (and their

implementations) in similarity search, we cover them all in our overview of vector indexes.

https://www.pinecone.io/learn/series/faiss/vector-indexes/

