
 
 

1 
 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS 
 

Concurrency Control 

In a multiprogramming environment where multiple transactions can be executed 

simultaneously, it is highly important to control the concurrency of transactions. We have 

concurrency control protocols to ensure atomicity, isolation, and serializability of concurrent 

transactions. Concurrency control protocols can be broadly divided into two categories − 

Lock based protocols 

Time stamp based protocols 

Lock-based Protocols 

Database systems equipped with lock-based protocols use a mechanism by which any 

transaction cannot read or write data until it acquires an appropriate lock on it. Locks are of 

two kinds − 

Binary Locks − A lock on a data item can be in two states; it is either locked or unlocked. 

Shared/exclusive − This type of locking mechanism differentiates the locks based on their 

uses. If a lock is acquired on a data item to perform a write operation, it is an exclusive lock. 

Allowing more than one transaction to write on the same data item would lead the database 

into an inconsistent state. Read locks are shared because no data value is being changed. 

There are four types of lock protocols available − 

Simplistic Lock Protocol 

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a 

'write' operation is performed. Transactions may unlock the data item after completing the 

write operation. 

Pre-claiming Lock Protocol 

Pre-claiming protocols evaluate their operations and create a list of data items on which they 

need locks. Before initiating an execution, the transaction requests the system for all the locks 

it needs beforehand. If all the locks are granted, the transaction executes and releases all the 

locks when all its operations are over. If all the locks are not granted, the transaction rolls 

back and waits until all the locks are granted. 

 

 

 



 
 

2 
 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS 
 

Two-Phase Locking 2PL 

This locking protocol divides the execution phase of a transaction into three parts. In the first 

part, when the transaction starts executing, it seeks permission for the locks it requires. The 

second part is where the transaction acquires all the locks. As soon as the transaction releases 

its first lock, the third phase starts. In this phase, the transaction cannot demand any new 

locks; it only releases the acquired locks. 

 

Two-phase locking has two phases, one is growing, where all the locks are being acquired by 

the transaction; and the second phase is shrinking, where the locks held by the transaction are 

being released. 

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and 

then upgrade it to an exclusive lock. 

Strict Two-Phase Locking 

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase, 

the transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not 

release a lock after using it. Strict-2PL holds all the locks until the commit point and releases 

all the locks at a time. 

 

Strict-2PL does not have cascading abort as 2PL does. 

Timestamp-based Protocols 

The most commonly used concurrency protocol is the timestamp based protocol. This 

protocol uses either system time or logical counter as a timestamp. 



 
 

3 
 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS 
 

Lock-based protocols manage the order between the conflicting pairs among transactions at 

the time of execution, whereas timestamp-based protocols start working as soon as a 

transaction is created. 

Every transaction has a timestamp associated with it, and the ordering is determined by the 

age of the transaction. A transaction created at 0002 clock time would be older than all other 

transactions that come after it. For example, any transaction 'y' entering the system at 0004 is 

two seconds younger and the priority would be given to the older one. 

In addition, every data item is given the latest read and write-timestamp. This lets the system 

know when the last read and write operation was performed on the data item. 

Timestamp Ordering Protocol 

The timestamp-ordering protocol ensures serializability among transactions in their 

conflicting read and write operations. This is the responsibility of the protocol system that the 

conflicting pair of tasks should be executed according to the timestamp values of the 

transactions. 

The timestamp of transaction Ti is denoted as TS(Ti). 

Read time-stamp of data-item X is denoted by R-timestamp(X). 

Write time-stamp of data-item X is denoted by W-timestamp(X). 

Timestamp ordering protocol works as follows − 

If a transaction Ti issues a read(X) operation − 

If TS(Ti) < W-timestamp(X) 

Operation rejected. 

If TS(Ti) >= W-timestamp(X) 

Operation executed. 

All data-item timestamps updated. 

If a transaction Ti issues a write(X) operation − 

If TS(Ti) < R-timestamp(X) 

Operation rejected. 

If TS(Ti) < W-timestamp(X) 

Operation rejected and Ti rolled back. 

Otherwise, operation executed. 

Thomas' Write Rule 

This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected and T i is rolled 

back. 

Time-stamp ordering rules can be modified to make the schedule view serializable. 



 
 

4 
 24AI303 – DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS 
 

Instead of making Ti rolled back, the 'write' operation itself is ignored. 

 


