Concurrency Control

In a multiprogramming environment where multiple transactions can be executed
simultaneously, it is highly important to control the concurrency of transactions. We have
concurrency control protocols to ensure atomicity, isolation, and serializability of concurrent
transactions. Concurrency control protocols can be broadly divided into two categories —

Lock based protocols
Time stamp based protocols
Lock-based Protocols

Database systems equipped with lock-based protocols use a mechanism by which any
transaction cannot read or write data until it acquires an appropriate lock on it. Locks are of
two kinds —

Binary Locks — A lock on a data item can be in two states; it is either locked or unlocked.

Shared/exclusive — This type of locking mechanism differentiates the locks based on their
uses. If a lock is acquired on a data item to perform a write operation, it is an exclusive lock.
Allowing more than one transaction to write on the same data item would lead the database
into an inconsistent state. Read locks are shared because no data value is being changed.

There are four types of lock protocols available —
Simplistic Lock Protocol

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a
‘write' operation is performed. Transactions may unlock the data item after completing the
write operation.

Pre-claiming Lock Protocol

Pre-claiming protocols evaluate their operations and create a list of data items on which they
need locks. Before initiating an execution, the transaction requests the system for all the locks
it needs beforehand. If all the locks are granted, the transaction executes and releases all the
locks when all its operations are over. If all the locks are not granted, the transaction rolls
back and waits until all the locks are granted.

Lock acquisition
phase

N

T begin Tend ™M

1
24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS



Two-Phase Locking 2PL

This locking protocol divides the execution phase of a transaction into three parts. In the first
part, when the transaction starts executing, it seeks permission for the locks it requires. The
second part is where the transaction acquires all the locks. As soon as the transaction releases
its first lock, the third phase starts. In this phase, the transaction cannot demand any new
locks; it only releases the acquired locks.

Lock acquisition releasing
phase \ phase
T begin Tend M€

Two-phase locking has two phases, one is growing, where all the locks are being acquired by
the transaction; and the second phase is shrinking, where the locks held by the transaction are
being released.

To claim an exclusive (write) lock, a transaction must first acquire a shared (read) lock and
then upgrade it to an exclusive lock.

Strict Two-Phase Locking

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase,
the transaction continues to execute normally. But in contrast to 2PL, Strict-2PL does not
release a lock after using it. Strict-2PL holds all the locks until the commit point and releases
all the locks at a time.

Lock acquisition release at
phase commit
T begin Tend ™M

Strict-2PL does not have cascading abort as 2PL does.
Timestamp-based Protocols

The most commonly used concurrency protocol is the timestamp based protocol. This
protocol uses either system time or logical counter as a timestamp.

2
24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS



Lock-based protocols manage the order between the conflicting pairs among transactions at
the time of execution, whereas timestamp-based protocols start working as soon as a
transaction is created.

Every transaction has a timestamp associated with it, and the ordering is determined by the
age of the transaction. A transaction created at 0002 clock time would be older than all other
transactions that come after it. For example, any transaction 'y' entering the system at 0004 is
two seconds younger and the priority would be given to the older one.

In addition, every data item is given the latest read and write-timestamp. This lets the system
know when the last read and write operation was performed on the data item.

Timestamp Ordering Protocol

The timestamp-ordering protocol ensures serializability among transactions in their
conflicting read and write operations. This is the responsibility of the protocol system that the
conflicting pair of tasks should be executed according to the timestamp values of the
transactions.

The timestamp of transaction Tj is denoted as TS(T).
Read time-stamp of data-item X is denoted by R-timestamp(X).
Write time-stamp of data-item X is denoted by W-timestamp(X).

Timestamp ordering protocol works as follows —

If a transaction Ti issues a read(X) operation —

If TS(Ti) < W-timestamp(X)

Operation rejected.
If TS(Ti) >= W-timestamp(X)
Operation executed.

All data-item timestamps updated.

If a transaction Ti issues a write(X) operation —

If TS(Ti) < R-timestamp(X)

Operation rejected.

If TS(Ti) < W-timestamp(X)
Operation rejected and Ti rolled back.
Otherwise, operation executed.
Thomas' Write Rule

This rule states if TS(Ti) < W-timestamp(X), then the operation is rejected and TH is rolled
back.

Time-stamp ordering rules can be modified to make the schedule view serializable.

3
24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS



Instead of making TH rolled back, the ‘write' operation itself is ignored.

4
24A1303 — DATA MANAGEMENT & DATABASE MANAGEMENT SYSTEMS



