UNIT -III

RELATIONAL DATABASE DESIGN AND NORMALIZATION

1. Functional Dependency Inference Rules

Inference rules are a set of rules used to **derive all possible functional dependencies** from a given set of FDs.

These rules form the basis of **Armstrong's Axioms** and help in determining closure, keys, and normalization.

1.1 Armstrong's Axioms (Basic Inference Rules) Rule 1: Reflexivity

If Y is a subset of X, then:

 $X \rightarrow Y$

Example:

{RollNo, Name} \rightarrow Name

Rule 2: Augmentation

If $X \rightarrow Y$, then adding the same attribute Z to both sides keeps it valid:

 $XZ \rightarrow YZ$

Example:

RollNo → Name implies RollNo, CourseID → Name, CourseID

Rule 3: Transitivity

If $X \rightarrow Y$ and $Y \rightarrow Z$, then:

 $X \rightarrow Z$

Example:

RollNo → Dept

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 $Dept \rightarrow HOD$

Therefore: RollNo → HOD

1.2 Additional Inference Rules (Derived Rules)

IGINEERING 4

Rule 4: Union

If

 $X \rightarrow Y$ and $X \rightarrow Z$

then

 $X \rightarrow YZ$

Rule 5: Decomposition

If

 $X \rightarrow YZ$

then

 $X \rightarrow Y$ and $X \rightarrow Z$

Rule 6: Pseudotransitivity

If

 $X \rightarrow Y$ and $WY \rightarrow Z$

then

 $WX \rightarrow Z$

These inference rules are essential for computing closure of attributes, finding keys, and simplifying FDs during normalization.

2. Minimal Cover (Canonical Cover)

A **minimal cover** is a simplified set of functional dependencies that is **equivalent** to the original set, but contains **no redundancy**.

It is useful for decomposition, normalization, and finding keys.

Properties of a Minimal Cover

A minimal cover must satisfy:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

- 1. Right side is single-valued
 - Each FD must be of the form
 - $X \rightarrow A$

where **A** is a single attribute.

- 2. No extraneous attributes on LHS
 - Each attribute on left side is essential.
- 3. No redundant dependencies
 - Removing any FD should change the closure.

Steps to Compute Minimal Cover

Let **F** be the original set of FDs.

Step 1: Split RHS

Convert FDs so that the right-hand side has only one attribute.

Example:

 $A \rightarrow BC$ becomes $A \rightarrow B$ $A \rightarrow C$

Step 2: Remove extraneous attributes from LHS

For each FD $X \rightarrow A$:

- check if $(X x) \rightarrow A$ can still be derived using F. If yes, remove x. For each attribute **x** in **X**,

Example:

```
OPTIMIZE OUTSPREAD
Check if B \rightarrow C holds?
If yes \rightarrow minimal LHS is B \rightarrow C
```

Step 3: Remove redundant FDs

For each FD in F:

- Temporarily remove it.
- Compute closure of remaining FDs.
- If the removed FD can still be derived \rightarrow it is redundant.

Example: Minimal Cover

Given:

```
F = \{ A \rightarrow BC, B \rightarrow D, A \rightarrow D \}
    Step 1: Split RHS
```

 $A \rightarrow C$

 $B \rightarrow D$ $A \rightarrow D$

Step 2: Remove extraneous attributes

GINEERING None of the LHS have more than one attribute \rightarrow nothing to remove.

Step 3: Remove redundant dependencies

Check redundancy:

Is $A \rightarrow D$ redundant? Yes, because $A \rightarrow B$ and $B \rightarrow D$ gives $A \rightarrow D$. Remove $A \rightarrow D$.

Final minimal cover:

{ $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow D$

Importance of Minimal Cover

- Helps in 3NF and BCNF decomposition
- Removes redundancy in FDs
- Ensures minimal and efficient database schema
- Helps in computing attribute closure and candidate keys

OBSERVE OPTIMIZE OUTSPREAD