

5.9. Air quality sensor

An **air quality sensor** detects and measures pollutants, gases, and particulate matter (PM) in the air. These sensors are crucial for monitoring environmental and indoor air conditions for health and safety.

Types of Air Quality Sensors

Air quality sensors can be categorized by **what they measure**:

Sensor Type	What It Detects	Example Pollutants
Gas Sensors	Harmful gases	CO ₂ , CO, O ₃ , SO ₂ , NO _x , VOCs
Particulate Matter (PM) Sensors	Airborne particles	PM1.0, PM2.5, PM10 (dust, smoke)
CO₂ Sensors	Carbon dioxide levels	Indoor air quality, ventilation
CO Sensors	Carbon monoxide	Toxic gas from combustion
Ozone (O₃) Sensors	Ozone concentration	Industrial areas, smog
VOC Sensors	Volatile organic compounds	Paint fumes, cleaning agents
Humidity & Temp Sensors	Relative humidity and temperature	Affect air quality & comfort

Applications of Air Quality Sensors

Air quality sensors are used in various industries and settings to promote health, safety, and efficiency.

Sector/Field	Applications
Smart Homes	Monitor indoor air quality, trigger ventilation
Industry	Emission monitoring, worker safety
Schools/Offices	Air quality optimization for better productivity
Healthcare	Cleanroom management, patient safety
Smart Cities	Urban pollution mapping, traffic emissions
Automotive	Cabin air monitoring, air filters control
Agriculture	Greenhouse gas control, crop health monitoring
Research & Labs	Environmental studies, chemical experiments

MQ135 Air Quality Sensor

It is a semiconductor air quality check sensor suitable for monitoring applications of air quality. It is highly sensitive to NH₃, NO_x, CO₂, benzene, smoke, and other dangerous gases in the atmosphere. It is available at a low cost for harmful gas detection and monitoring applications.

5.10. CO₂ sensor

A **carbon dioxide sensor** detects and measures the concentration of carbon dioxide (CO₂) in the air

There are **3 main types** of CO₂ sensors, based on the **detection technology** they use:

Sensor Type	How It Works	Pros	Common Use
NDIR (Non-Dispersive Infrared)	Measures how much infrared light CO ₂ absorbs	High accuracy, stable, long life	HVAC, IAQ
Chemical (MOX)	CO ₂ reacts with a chemical compound; resistance changes	Low cost, compact	Consumer devices
Photoacoustic	Measures sound produced by CO ₂ absorbing light	Very precise, suitable for small sensors	High-end monitoring

Applications of CO₂ Sensors

Field/Industry	Application Examples
<input type="checkbox"/> Building Automation	Control HVAC systems for ventilation and energy efficiency
<input type="checkbox"/> Smart Homes	Monitor indoor air quality, automate air purifiers
<input type="checkbox"/> Schools & Offices	Ensure proper ventilation to boost health & focus
<input type="checkbox"/> Healthcare	ICU monitoring, breathing analyzers
<input type="checkbox"/> Greenhouses	CO ₂ level control to optimize plant growth
<input type="checkbox"/> Aviation & Automotive	Cabin CO ₂ level monitoring for safety
<input type="checkbox"/> Industrial Safety	CO ₂ leak detection in breweries, cold storage, labs
<input type="checkbox"/> Research Labs	Atmospheric studies, controlled experiments

What is a Carbon Dioxide Sensor?

CO2 sensor definition is, an instrument that is used to detect the CO2 gas content in the air or its surroundings is known as a carbon dioxide sensor. Once the instrument detects the CO2 gas content then it generates an alarm so that appropriate action can be taken by the people.

CO2 Gas Sensor

This type of sensor plays an essential role in making a good atmospheric situation for the public. The application areas of CO2 sensors mainly include different industries like carbonated beverage beer, coal, agricultural planting, agricultural breeding & the daily life of people.

Working Principle

The CO2 sensor working principle is similar to infrared hydrocarbon detectors. They generate an infrared light beam tuned to an exact frequency that is absorbed readily through CO2 molecules. The main difference between the CO2 sensor and IR hydrocarbon detector is the selection of IR wavelength & filter.

Since every CO2 molecule is absorbed by some of the infrared light, the quantity of absorption is proportional to the CO2 percentage available within the ambient air. These CO2 sensors utilize sapphire windows to guard the elements of the infrared transmitter & receiver from injury from any acidic gases that may be present in the ambient atmosphere.

Catalytic Combustion Sensor

5.11. RFID Sensor

A Radio Frequency Identification (RFID) sensor **uses** radio waves **to** read/write data from RFID tags without physical contact.

Types of RFID Systems (Based on Frequency)

Frequency Range	Type	Read Range	Features	Common Tags
Low Frequency (LF)	~125–134 kHz	Up to 10 cm	Good for metal/liquid environments	Animal ID, access cards
High Frequency (HF)	13.56 MHz	Up to 1 meter	Common, cost-effective	NFC, library tags
Ultra-High Frequency (UHF)	860–960 MHz	Up to 12 meters	Long-range, fast data transfer	Inventory, supply chain
Microwave RFID	2.45 GHz	Up to 10+ meters	High-speed, sensitive to interference	Toll systems, active tags

Applications of RFID Sensors

Industry	Applications
Retail	Inventory management, anti-theft systems
Access Control	Employee ID badges, secure entry systems
Logistics	Package tracking, warehouse automation
Healthcare	Patient ID wristbands, medical equipment tracking
Transportation	Toll collection (e.g., EZ Pass), fleet management
Libraries	Book checkout/return automation
Agriculture	Animal tagging, livestock health tracking
Manufacturing	Asset tracking, production line monitoring
Airports	Baggage handling systems

