24A1301 - OPERATING SYSTEMS & CLOUD BASICS

POSIX Threads (pthreads)

POSIX threads, also known as pthreads, are a standard for creating and managing threads in
a Unix-like operating system, including Linux. Pthreads provide a way to create multiple threads of
execution within a single process, allowing for concurrent programming and improved system

utilization.

o ltis an execution model
o Indepetently from a language
o Parallel execution model

o Itallows a program to control multiple different flows of work that overlap in time.

Key Concepts:

Thread vs Process

e Process: Independent execution unit with its own memory space.

e Thread: Lightweight process within a process, sharing memory and file descriptors

1. Thread Creation: Creating a new thread using pthread_create().

2. Thread Synchronization: Coordinating access to shared resources using mutexes, condition

variables, and semaphores.

3. Thread Communication: Exchanging data between threads using shared variables or message

passing.

Main Pthread Functions (or) pthread API:

1. pthread_create(): Create a new thread.

2. pthread_join(): Wait for a thread to finish.

3. pthread_exit(): Terminate a thread.

4. pthread_mutex_init() : Initializes a mutex

5. pthread_mutex_lock() and pthread_mutex_unlock(): Lock and unlock a mutex.

6. pthread_mutex_destroy() : Destroys a mutex.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

7. pthread_cond_wait() and pthread_cond_signal(): Wait on and signal a condition variable.

6. pthread_self() : Returns the calling thread’s ID

Thread States:
A POSIX thread can exist in several states throughout its lifecycle:
a) Running:
The thread is currently executing on a CPU.
b) Ready (Runnable):

The thread is ready to execute but is waiting for a CPU to become available. It is in the scheduler's

queue.
c)Blocked (or Waiting):
The thread is waiting for a specific event to occur, such as:

e A mutex lock to be released.

e An I/O operation to complete.

o A condition variable to be signalled.

o Another thread to complete its execution (e.g., using pthread_join ()).

e Atimed wait (e.g., using pthread_cond_timedwait ()).

d)Terminated (Exited):

This is the final state of a thread, indicating that it has completed its execution. A thread can
terminate voluntarily by returning from its entry point function or by calling pthread_exit(). It can
also be terminated by another thread using pthread_cancel(). Once terminated, a thread cannot be
restarted.

Thread joining

e Function: Thread joining (using pthread_join() ) allows one thread to wait for another thread to

complete its execution.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

Impact on thread state:

When a thread calls pthread_join() on another thread, the calling thread will block and enter a

"waiting" state until the target thread terminates.

When the target thread exits (e.g., by returning from its start routine or calling pthread_exit() ), the

joining thread is unblocked and retrieves the target thread's exit status.

Example: Ensuring that all worker threads have finished processing their tasks before the main

thread continues with a final aggregation step.

In essence, POSIX synchronization mechanisms introduce various states for threads,
including running, ready, blocked, and waiting, depending on whether they can acquire a lock, are
waiting for a condition to be met, or are waiting for another thread to finish. Understanding these
mechanisms and their impact on thread states is crucial for designing and implementing correct and

efficient multithreaded applications in the POSIX environment.

Advantage:

1. Improved responsiveness: Threads can handle tasks concurrently, improving system

responsiveness.

2. Increased throughput: Threads can utilize multiple CPU cores, increasing overall system
throughput.

3. Efficient resource use: Threads share the same memory space, reducing memory overhead.

Disadvantage:

1. Synchronization: Coordinating access to shared resources can be complex.

2. Communication: Exchanging data between threads can be error-prone.

3. Deadlocks: Threads can deadlock when waiting for each other to release resources.

Synchronization in Pthreads

o Use mutexes to avoid race conditions when multiple threads access shared data.

o Use condition variables to block a thread until a condition is true.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

o Feature Pthreads
Library - pthread.h
Key Benefit - Efficient concurrency in shared memory
Used For - Parallelism, synchronization, multi-threading in apps

Svnchronization Mechanisms and Their Impact on Thread State

Synchronization mechanisms in an operating system are crucial for managing concurrent access to
shared resources by multiple threads, preventing data corruption and ensuring orderly
execution. They impact thread state by potentially blocking threads (putting them in a waiting state)
while they contend for resources or waiting for a specific condition, and by allowing threads to
transition from a waiting state to a runnable state once the resource becomes available or the

condition is met.

Example:

Imagine multiple threads writing to a shared file. Without synchronization, they might overwrite
each other's data, leading to data corruption. Using a lock, only one thread can hold the lock at a
time, ensuring exclusive access to the file. Other threads attempting to write to the file will be
blocked (transitioning to a waiting state) until the lock is released. Once the first thread finishes
writing and releases the lock, another waiting thread can acquire the lock, transition to a running

state, and continue writing.

POSIX Threads provide several mechanisms for synchronization, which directly influence thread

state transitions:

a) Mutexes (Mutual Exclusion Locks):

Definition: Mutexes (mutual exclusions) are locks that enforce exclusive access to a shared resource
or a section of code (a "critical section™). Only one thread can hold the mutex at a time, preventing

other threads from accessing the protected resource or code section.

Mechanism: A thread wishing to access the protected resource first attempts to acquire the mutex
lock. If the lock is available, the thread acquires it and enters the critical section. If another thread
already holds the lock, the requesting thread blocks (pauses execution) until the lock is released.
After finishing its work with the protected resource, the thread releases the mutex lock, allowing

another waiting thread to acquire it.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

Real-world Example: Imagine a shared counter in a multithreaded application. Without a mutex,
multiple threads incrementing the counter simultaneously could lead to an incorrect final value.
Using a mutex ensures that only one thread increments the counter at a time, guaranteeing data

integrity.

Impact on Thread State: A thread attempting to acquire a locked mutex will transition from a
"running” or "ready" state to a "waiting" or "blocked" state until the mutex is released by the

owning thread.

b) Condition Variables:

Definition: Condition variables facilitate communication and synchronization among threads based
on programmer-defined conditions. They allow threads to wait until a specific condition becomes

true before proceeding.

Mechanism: Threads waiting for a condition to be met will wait on a condition variable,
relinquishing the CPU. When another thread modifies the shared resource and makes the condition

true, it signals the condition variable, waking up the waiting threads.

Real-world Example: Consider a producer-consumer scenario where one thread produces data and
another consumes it. The consumer thread might wait on a condition variable until data is available
in the shared buffer, and the producer thread might signal the condition variable after adding data,

allowing the consumer to proceed.

Impact on Thread State: A thread calling pthread_cond_wait() will atomically release the
associated mutex and enter a "waiting" or "blocked" state until another thread signals the
condition variable using pthread_cond_signal() or pthread_cond_broadcast(). Upon  being

signalled, the thread reacquires the mutex and becomes "ready" to run.

¢) Read-Write Locks:

Definition: Read-write locks are specialized locks that differentiate between read and write
operations on a shared resource. Multiple threads can simultaneously acquire a read lock, allowing
concurrent read access. However, only one thread can acquire a write lock at a time, providing

exclusive write access and preventing any concurrent read or write operations.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

Mechanism: When a thread wants to read the shared data, it requests a read lock. Multiple threads
can hold read locks concurrently. When a thread wants to modify the data, it requests a write lock.
This blocks any other threads from acquiring either a read or write lock until the write lock is

released.

Real-world Example: A database or file system where data is frequently read but infrequently
updated. Read-write locks would allow multiple threads to read data concurrently, enhancing

performance, but would ensure exclusive access for any updates to maintain data consistency

Impact on thread state:

When a thread acquires a read lock, it can read the shared resource. Multiple threads can hold read

locks concurrently.

If a thread tries to acquire a write lock while other threads hold either read or write locks, it will be

blocked until all other locks are released.

If a thread holding a read lock attempts to acquire a write lock on the same resource, the behavior

is undefined according to the standard, highlighting the importance of careful usage.

Example: A shared data structure accessed by many threads for reading and only occasionally
updated by a single thread. Read-write locks allow for greater concurrency than a single mutex in

such scenarios

d) Barriers:

Definition: Barrier synchronization forces a group of threads to wait at a specific point until all
threads in the group have reached that point. Once all threads have arrived at the barrier, they are all

released to continue execution.

Mechanism: A barrier is initialized with a specific count (the number of threads that need to reach
it). Each thread, upon reaching the barrier, increments an internal counter and then waits. When the

counter reaches the initial count, all waiting threads are released.

Real-world Example: In parallel processing, if multiple threads are working on different parts of a
larger task, a barrier could be used to ensure all threads complete their current iteration before

proceeding to the next one, guaranteeing data consistency or coordinating subsequent steps.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

Impact on Thread State: Threads reaching a barrier will enter a "waiting” or "blocked" state
until all participating threads have arrived at the barrier, at which point all waiting threads
transition to a "ready" state.

Threads calling pthread_barrier_wait() will block until a specified number of threads have
reached the barrier, at which point all blocked threads transition to Ready.
e) Semaphores:
Function: Semaphores are signaling mechanisms that can be used for more general synchronization

than mutexes, allowing one or more threads to access a shared resource.

Impact on thread state:

A semaphore has an internal counter. When a thread performs a "wait" operation

(e.g., sem_wait() ), it decrements the semaphore's count. If the count becomes negative, the thread

is blocked and placed in a waiting queue associated with the semaphore.

When a thread performs a "post" operation (e.g., sem_post() ), it increments the semaphore’s count.

If any threads are blocked on the semaphore, one of them is unblocked and transitions to a "ready"

state.

Threads performing a sem_wait() operation on a semaphore with a count of zero will

transition to Blocked.

A sem_post() operation increments the semaphore count and can unblock a waiting thread,
moving it to the Ready state.

f) Critical section:

Definition: A section of code where shared resources are accessed. Only one process or thread

should be allowed in the critical section at a time to prevent data corruption.

Real-world analogy: Imagine a public restroom. Only one person can be inside at a time to maintain
privacy and prevent conflicts. The act of entering, using, and exiting the restroom represents the

critical section.

By understanding POSIX threads, developers can write more efficient and concurrent programs that

take advantage of multi-core processors and improve system.

THE CRITICAL-SECTION PROBLEM

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



24A1301 - OPERATING SYSTEMS & CLOUD BASICS

Consider a system consisting of n processes {PO0, P1, ..., Pn—1}. Each process has a segment
of code, called a critical section, in which the process may be changing common variables, updating

a table, writing a file, and so on.

Important feature:

when one process is executing in its critical section, no other process is allowed to
execute in its critical section. That is, no two processes are executing in their critical sections at the

same time.

» Each process must request permission to enter its critical section.
» The section of code implementing this request is the entry section.
» The critical section may be followed by an exit section.

» The remaining code is the remainder section.

do {

entry section

critical section

exit section
remainder section
} while (true);

Figure . General structure of a typical process F,.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY



