1.3 OS INTERFACES: SYSTEM CALLS, SHELL

In an operating system (OS), the shell and system calls function as essential

interfaces that bridge the gap between users, application programs, and the core
of the system (the kernel).
1. SHELL
1. The Shell (User Interface)
e The shell is the outermost layer of the OS that serves as a direct interface
for human users.
e Itinterprets user commands and translates them into a format the OS kernel

can understand.
2. Primary Types:

o Command-Line Interface (CLI): Text-based environments
like Bash (Linux/macQOS), PowerShell, or Command Prompt
(Windows).

o Graphical User Interface (GUI): Visual environments using icons
and menus, such as GNOME or Windows Explorer.

3. Core Functions:
e |t parses inputs, executes programs, manages input/output redirection (e.g.,
using > or |), and supports shell scripting for task automation

OS Interface Hierarchy Diagram

The architecture is typically represented as concentric circles or vertical layers:
Users: Interact directly with the shell via commands or graphical icons.
Shell (The Interface): Translates user input into instructions the system can
execute.

e CLI (Command-Line): Text-based (e.g., Bash, PowerShell).

e GUI (Graphical): Visual (e.g., Windows Explorer, GNOME).

e Voice based Interface: Voice (e.g., Siri, Alexa)
Kernel (The Core): The central part of the OS that manages resources and talks
to hardware.

Hardware: The physical components (CPU, RAM, Disk) managed by the kernel.

24CS404 OS

Linux Architecture

Applications

Kernel Space

system calls

How the Shell Works

Read: The shell waits for user input (a command like Is or a mouse click).
Evaluate: It parses the input to determine which program or service is required.
Execute: It invokes system calls to request the kernel to perform tasks like
opening a file or printing to the screen.
Output: Once the kernel completes the task, the shell displays the results back to
the user.
Example:

e \When a user opens a file in Windows, the GUI Shell sends a request to the

Kernel, which retrieves the file and displays it.

In simple terms, Kernel is the heart of the OS, managing resources and hardware
whereas the Shell is the user interface, allowing interaction with the system.
2. SYSTEM CALLS IN OPERATING SYSTEM

e Asystem call is an interface between a program running in user space and
the operating system (OS).

e Application programs use system calls to request services and
functionalities from the OS’s kernel.

e When a program invokes a system call, the execution context switches
from user to kernel mode, allowing the system to access hardware and

perform the required operations safely.

24CS404 OS

o After the operation is completed, the control returns to user mode, and the
program continues its execution.

Advantages

e Ensures that hardware resources are isolated from user space processes.

e Prevents direct access to the kernel or hardware memory.

¢ Allows application code to run across different hardware architectures.
How Do System Calls Work?
1. System Call Request. The application requests a system call by invoking its
corresponding function. For instance, the program might use the read() function
to read data from a file.
2. Context Switch to Kernel Space. A software interrupt or special instruction
Is used to trigger a context switch and transition from the user mode to the kernel
mode.
3. System Call Identified. The system uses an index to identify the system call

and address the corresponding kernel function.

User Space Kernel Space

App Requests | g - System Call
System Call e Identified

Switches Context *

to Kernel Mode

Kernel Function

Based on
Execution *

System Call is
Context

Executed
Returned to
User Space System Call
App Resumes 4.—6— - Return Values
its Execution are Prepared

. J

5. System Prepares Return Values. After the kernel function completes its
operation, any return values or results are prepared for the user application.

6. Context Switch to User Space. The execution context is switched back from
kernel mode to user mode.

7. Resume Application. The application resumes its execution from where it left

off, now with the results or effects of the system call.

24CS404 OS

Features of System Calls

Security

Abstraction

Access control

Consistency

Types of System Calls

1. Process Control
System calls play an essential role in controlling system processes. They enable

you to:

Create new processes or terminate existing ones.

Load and execute programs within a process’s space.

Schedule processes and set execution attributes, such as priority.

Wait for a process to complete or signal upon its completion.

Purpose System Call
Create a new process ||fork ()
Execute a new programijexec ()
Terminate process exit ()
Wait for a child process|jwait ()
Get process ID getpid/()
Change priority nice ()

Exec System Calls (Program Execution)
Exec system calls replace the current process image with a new program.
Common exec family calls:
. execl()
. execv()
. execvp()
. execve()
Example Flow
fork() — creates child

exec() — loads new program into child

24CS404 OS

2. File Management

System calls support a wide array of file operations, such as:

e Reading from or writing to files.

e Opening and closing files.

e Deleting or modifying file attributes.

e Moving or renaming files.

e Press enter or click to view image in full size

Operation |System Call Example

Create afile |creat () /open ()

Open afile |open ()

Read from file|lread ()

Write to file |write ()

Linux/Unix Function Description

mkdir()

Create a new directory.

rmdir()

Remove a directory.

3. Device Management

System calls can be used to facilitate device management by:

e Requesting device access and releasing it after use.

e Setting device attributes or parameters.

e Reading from or writing to devices.

e Mapping logical device names to physical devices.

Linux/Unix Function

Description

brk() or sbrk()

Increase or decrease the program’s data space.

mmap()

Map files or devices into memory.

4. Information Maintenance

This type of system calls enables processes to:

e Retrieve or modify various system attributes.

e Set the system date and time.

e Query system performance metrics.

24CS404 OS

Linux/Unix Function Description
time() Get the current time.
getuid() Get the user ID.
getgid() Get the group ID.

5. Communication
The communication call type facilitates:
e Sending or receiving messages between processes.
e Synchronizing actions between user processes.
e Establishing shared memory regions for inter-process communication.

e Networking via sockets.

Linux/Unix Function Description

socket() Create a new socket.

bind() Bind a socket to a network address.
listen() Listen for connections on a socket.
accept() Accept a new connection on a socket.
connect() Initiate a connection on a socket.
send() or recv() Send and receive data on a socket.

6. Security and Access Control
System calls contribute to security and access control by:
« Determining which processes or users get access to specific resources
and who can read, write, and execute resources.

« Facilitating user authentication procedures.

Linux/Unix Function Description
chmod() or umask() |[Change the permissions/mode of a file.
chown() Change the owner and group of a file.

User types a command in the shell — shell parses it — shell makes a system call
— kernel executes the request — kernel returns the result — shell displays it to

the user.

24CS404 OS

3. Terminal

A terminal is a text-based interface that allows a user to interact with the operating

system using commands instead of graphical icons.

It acts as a bridge between the user and the OS kernel through a shell (command

interpreter).
Component Description
. The screen or window where you type commands and see the
Terminal
output.
The command-line interpreter that processes the commands (e.g.,
Shell
bash, zsh, sh).
Kernel The core part of the OS that executes the requested operations.
System Low-level functions used by the shell and commands to
Calls communicate with the kernel.

Working of Terminal Interface

1. User enters a command — e.g., Is -l

2. Shell interprets it and translates it into a system call (like open(), read(),

write()).

3. Kernel executes the request (e.g., read directory contents).

4. Output is displayed back on the terminal.

4. Linux Shell

« Asshell in Linux is a command-line interface (CLI) that allows users to

interact with the operating system by typing commands.

« It acts as an interpreter between the user and the OS kernel —

converting human-readable commands into system calls that the kernel

can understand and execute.

Position of Shell in OS Architecture

USER

SHELL (BASH, SH)

KERNEL (LINUX CORE)

HARDWARE RESOURCES

24CS404 OS

Main Functions of the Shell

Function

Description

Command
Interpretation

Reads and executes commands typed by the user.

Program Execution

Runs programs or scripts (e.g., Is, cat, gcc, etc.).

Input/Output

Controls data flow between files and commands (>,
Redirection <, >>),

Pipelines

Connects commands using -

Environment Control

Manages environment variables (PATH, HOME,
etc.).

Scripting

Automates tasks using shell scripts (.sh files).

Types of Linux Shells

Shell Type

Description

Bash (Bourne Again Shell)

Most common and default shell in Linux.

sh (Bourne Shell)

The original Unix shell, simple and stable.

csh / tcsh

C-like syntax, suitable for programmers.

ksh (Korn Shell)

Combines features of Bourne and C shells.

zsh (Z Shell)

Advanced shell with auto-correction, themes,
and plugins.

fish (Friendly Interactive
Shell)

User-friendly, with syntax highlighting.

Examples of Linux Shell Commands

Command

Description

pwd

Print current working directory.

Is -1

List files in detailed format.

cd /home

Change directory.

mkdir test

Create a new directory.

rm file.txt

Remove a file.

cat file.txt

Display file contents.

grep "word" file.txt

Search for a word in a file.

echo "Hello"

Display text on the screen.

chmod 755 file

Change file permissions.

ps

Display running processes.

24CS404 OS

