UNIT-III

MAGNETIC AND DIELECTRI MATERIALS

- **3.1.** Microscopic Classification Magnetic Materials
 - 3.1.1. Comparison of Dia, Para and Ferromagnetism
 - 3.1.2.Antiferromagnetism
 - 3.1.3. Ferrimagnetism and Ferrites
- 3.1.1. Comparison of Dia, Para and Ferromagnetism

S. No	Dia Magnetism	Para Magnetism	Ferro Magnetism
1.	There is no permanent magnetic moment in this material	It has permanent magnetic moment	It has enormous permanent magnetic moment
2.	No spin alignment No Applied Nagnetic Field (H = 0) Magnetic Field (H) O O O O O O O O O O O O O O O O O O O	Random alignment No Applied Applied Magnetic Field (H = 0) Magnetic Field (H) O O O O O O O O O O O O O O O O O O O	No Applied Nagnetic Field (H = 0) Magnetic Field (H) Applied Nagnetic Field (H) Parallel and Orderly alignment
3.	Repulsion of magnetic lines of force from center of the material. N Diamagnetic s (a) Normal State N Diamagnetic s S	Attraction of magnetic lines of force towards the center. N Para magnetic s s	Heavy attraction of magnetic N Ferro S lines of force towards center.
4.	Permeability is less than 1	Permeability is greater than 1	Permeability is very much greater than 1
5.	Susceptibility is negative	Susceptibility is positive and low	Susceptibility is positive and high
6.	It is independent of It is dependent of Temperature		It is dependent of Temperature

	Temperature	$\chi = \frac{C}{T}$	$\chi = \frac{C}{T - \theta}$
7.	Below critical temperature, it	Below Curie temperature, it is	Above Curie temperature, It is
	behaves as superconductors.	converted into dia magnetic.	converted into paramagnetic.
8.	Examples: Au, Ge, Si, Sb, Bi,	Examples: MnSO ₄ , CuSO ₄ , Al,	Examples: Ni, Co, Fe, Steel etc.
	etc.	etc.	

3.1.2.Antiferromagnetism

The spins are aligned in antiparallel manner due to unfavorable exchange interaction among them resulting in zero magnetic moment. Even when the field is increased, it has almost zero induced magnetic moment.

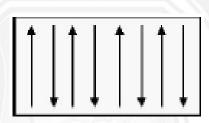


FIG 3.1.2(a) Alignment Of Magnetic Moment

Properties

1. The susceptibility is very small and is positive. It is given by

$$\chi = \frac{c}{T + \theta}$$
 for $T > T_N$ Where T_N is the Neel temperature.

2. Initially, the susceptibility increases slightly as the temperature increases and beyond a particular temperature is known as Neel temperature, the susceptibility decreases with temperature as in fig3.1.2(b)

E.g.: Ferrous oxide, manganese oxide, chromium oxide.

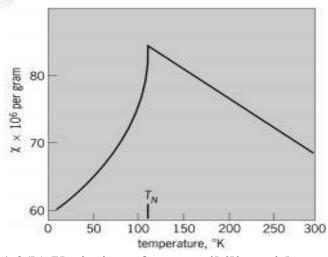


Fig 3.1.2(b) Variation of susceptibility with temperature

3.1.3 Types of magnetic materials

Soft and Hard Magnetic Materials

S.No	Soft magnetic materials	Hard magnetic materials
1	They can be easily magnetized and	They cannot be easily magnetized and
	demagnetized	demagnetized
2	They have narrow hysteresis loop	They have broad hysteresis loop
3	Hysteresis loss is small due to small	Hysteresis loss is large due to large
	hysteresis loop area.	hysteresis loop area.
4	Coercivity and retentivity are small.	Coercivity and retentivity are large.
5	They have low eddy current loss	They have large eddy current loss
6	Magnetic energy stored is small.	Magnetic energy stored is large.
7	Susceptibility and permeability are	Susceptibility and permeability are
	large.	small.
8	Movement of domain wall is easy and	Movement of domain walls is difficult
	hence large magnetization is	due to the presence of impurities.
	produced even for small applied field.	Hence large field is required to produce
		required magnetization.
9	They are free from strains and	They have impurities and large defects.
	impurities.	YAKO
10	E.g. Ferrites, Iron, Garnet, Silicon	E.g., Tungsten steel, cobalt steel,
	alloys. OBSERVE OPTIME	carbon steel.
11	They are used to make temporary	They are used to make permanent
	magnets. They are also used in	magnets. These magnets are used in
	switching devices, electromagnets,	magnetic detectors, microphones and
	matrix storge computers.	magnetic separators.