2.5 Graph Partitioning

Idea

e Divide graph into k groups

e Minimize edges between groups
Example

e Divide students into study groups
Limitation

¥ Number of communities must be known in advance



Matrix Factorization
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What is Matrix Factorization?

Matrix Factorization (MF) is a technique that decomposes a large matrix into smaller matrices
whose product approximates the original matrix.

R~PxQT

Where:
e R — Original matrix (e.g., user—item ratings)
e P — User latent feature matrix
e Q — Item latent feature matrix

Why Matrix Factorization is Needed

Real-world matrices (especially in data science) are:
o Large
e Sparse
e High-dimensional

Matrix factorization helps to:
v Reduce dimensionality
v Discover hidden (latent) features

v Predict missing values



Basic Idea (Intuition)

Instead of storing full information, MF represents:
e Each user by a small set of preferences
e Each item by a small set of characteristics

Example:
A movie rating system may discover latent features like:

e Action vs Romance
e Comedy vs Drama
Types of Matrix Factorization

1. Singular Value Decomposition (SVD)
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e U — Left singular vectors

e X — Singular values (importance)

e V — Right singular vectors
Applications

o Image compression

e Noise reduction

e Information retrieval
Limitation

X Works best on dense matrices

2. Non-Negative Matrix Factorization (NMF)
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Key Feature

e All values are non-negative
Applications

e Topic modeling

e Text mining

e Image analysis
3. Probabilistic Matrix Factorization (PMF)

Recommendation Algorithm of Probabilistic Matrix Factorization
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e Treats matrix entries as random variables

e Uses probability distributions
Application

e Recommendation systems



4. Matrix Factorization for Recommendation Systems
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Used in Collaborative Filtering:
e Predicts missing ratings
e Learns user—item interactions

Prediction Formula

fui = Pud
Learning the Factors

Usually done using:
e Gradient Descent

e Alternating Least Squares (ALS)
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Loss Function

Y (rui — pnq)® + A0 py 112+l q; 1)

Advantages

v Handles sparse data

v Scalable

v High prediction accuracy
v Interpretable latent features

Limitations

X Cold start problem
X Requires parameter tuning

X Hard to interpret features sometimes
Applications

v Recommendation systems (Netflix, Amazon)
v Image compression

v Topic modeling

v Signal processing



