
24CS301 – Data Structures and Algorithms

Rohini College of Engineering and Technology

GREEDY ALGORITHMS

• A greedy algorithm is a problem-solving technique that makes a sequence of

choices by selecting the best possible option available at each step.

• The key characteristic of a greedy algorithm is that it makes these choices in

a locally optimal way, with the hope that these local choices will lead to a

globally optimal solution.

Working

To understand how a greedy algorithm works, let’s break it down into simple steps:

• Make a choice – At each step, pick the best available option based on a

specific criterion.

• Proceed to the next step – Move forward and repeat the process until the

problem is solved.

• Check the final outcome – The algorithm arrives at a solution that is either

optimal or close to optimal.

Problems solved with greedy algorithm

• Coin change problem

• Fractional knapsack

• Activity Selection

• 0/1 Knapsack

• Dijkstra’s shortest path algorithm

• Huffman Encoding

• MST (Prim’s & Kruskal’s Algorithm)

24CS301 – Data Structures and Algorithms

Rohini College of Engineering and Technology

REAL LIFE EXAMPLES

Coin change problem

• The Coin Change problem is a classic example of a greedy algorithm in

action. The task is: given a set of coin denominations, determine the minimum

number of coins required to make a specific amount.

Greedy Approach:

• To solve this, the greedy algorithm picks the largest coin denomination first

and reduces the target amount by that coin’s value.

• This process repeats until the entire amount is made up using the least number

of coins possible.

Example

• Imagine we have coin denominations of {1, 5, 10, 25}, and we need to make

30.

• Start with the largest coin (25). Select one 25-Rs coin.

• Remaining amount: 30 - 25 = 5

• Next, choose the largest coin less than or equal to the remaining amount (5).

Select one 5-Rs coin.

• Remaining amount: 5 - 5 = 0

• In this case, the greedy algorithm successfully uses just two coins (one 25-Rs

coin and one 5-Rs coin) to make 30

Python Code

def coin_change_min(coins, amount):

 # Initialize dp array with "infinity"

 dp = [float('inf')] * (amount + 1)

 dp[0] = 0 # Base case: 0 coins to make amount 0

 for coin in coins:

24CS301 – Data Structures and Algorithms

Rohini College of Engineering and Technology

 for x in range(coin, amount + 1):

 dp[x] = min(dp[x], dp[x - coin] + 1)

 return dp[amount] if dp[amount] != float('inf') else -1

Example

coins = [1, 2, 5]

amount = 11

print("Minimum coins:", coin_change_min(coins, amount))

Output: 3 (11 = 5 + 5 + 1)

Activity selection problem

• The activity selection problem is an example of a greedy algorithm where the

maximum number of non-overlapping activities are selected from the given

activity set. A person can complete one activity at a time. The activities are

given in the form of their starting and completion times.

• We are given n activities, each with:

• a start time

• a finish time

• We need to select the maximum number of activities that can be performed

by a single person, assuming one activity at a time.

Key Idea of the Greedy Technique

• The greedy strategy here is:

 Always pick the activity that finishes earliest (among the remaining

ones).

Why?

• If we choose the activity that finishes earliest, it leaves the most room for

other activities to fit afterward.

https://www.tutorialspoint.com/data_structures_algorithms/greedy_algorithms.htm

24CS301 – Data Structures and Algorithms

Rohini College of Engineering and Technology

• This ensures the maximum number of non-overlapping activities can be

chosen.

Algorithm Steps

• Sort all activities by their finish times (earliest finishing activity comes first).

• Select the first activity (since it finishes earliest).

• For each next activity:

• If its start time ≥ finish time of the last selected activity, then select it.

• Otherwise, skip it.

• Continue until all activities are checked.

Example

Input:

 arr[] = {{5,9},{1,2},{3,4},{0,6},{5,7},{8,9}}

Sorted Activities: {1,2}, {3,4},{0,6},{5,7},{5,9},{8,9}

Select First activity {1,2}

Continue selecting

• Next, A2 (3–4) → valid (starts after 2) ✅

• Next, A4 (5–7) → valid (starts after 4) ✅

• Next, A5 (8–9) → valid (starts after 7) ✅

• Skip A6 (5–9) and A3 (0–6) because they overlap ❌

Final Selected Set:(A1: 1–2), (A2: 3–4), (A4: 5–7), (A5: 8–9)

Time Complexity

• Overall: O(n log n)

