24CS301 — Data Structures and Algorithms

GREEDY ALGORITHMS

» A greedy algorithm is a problem-solving technique that makes a sequence of
choices by selecting the best possible option available at each step.
» The key characteristic of a greedy algorithm is that it makes these choices in
a locally optimal way, with the hope that these local choices will lead to a
globally optimal solution.
Working
To understand how a greedy algorithm works, let’s break it down into simple steps:
» Make a choice — At each step, pick the best available option based on a
specific criterion.
* Proceed to the next step — Move forward and repeat the process until the
problem is solved.
» Check the final outcome — The algorithm arrives at a solution that is either
optimal or close to optimal.
Problems solved with greedy algorithm
« Coin change problem
» Fractional knapsack
» Activity Selection
» 0/1 Knapsack
* Dijkstra’s shortest path algorithm
* Huffman Encoding
¢ MST (Prim’s & Kruskal’s Algorithm)

Rohini College of Engineering and Technology

24CS301 — Data Structures and Algorithms

REAL LIFE EXAMPLES
Coin change problem
« The Coin Change problem is a classic example of a greedy algorithm in
action. The task is: given a set of coin denominations, determine the minimum
number of coins required to make a specific amount.
Greedy Approach:
* To solve this, the greedy algorithm picks the largest coin denomination first
and reduces the target amount by that coin’s value.
 This process repeats until the entire amount is made up using the least number
of coins possible.
Example
* Imagine we have coin denominations of {1, 5, 10, 25}, and we need to make
30.
 Start with the largest coin (25). Select one 25-Rs coin.
* Remaining amount: 30 -25=5
» Next, choose the largest coin less than or equal to the remaining amount (5).
Select one 5-Rs coin.
* Remaining amount:5-5=0
* Inthis case, the greedy algorithm successfully uses just two coins (one 25-Rs
coin and one 5-Rs coin) to make 30
Python Code
def coin_change_min(coins, amount):
Initialize dp array with "infinity"
dp = [float('inf')] * (amount + 1)
dp[0] =0 # Base case: 0 coins to make amount 0

for coin in coins:

Rohini College of Engineering and Technology

24CS301 — Data Structures and Algorithms

for x in range(coin, amount + 1):
dp[Xx] = min(dp[x], dp[x - coin] + 1)
return dp[amount] if dp[amount] != float('inf') else -1
Example
coins =1, 2, 5]
amount = 11
print("Minimum coins:", coin_change_min(coins, amount))
#Output: 3(11=5+5+1)
Activity selection problem

« The activity selection problem is an example of a greedy algorithm where the

maximum number of non-overlapping activities are selected from the given
activity set. A person can complete one activity at a time. The activities are
given in the form of their starting and completion times.
* We are given n activities, each with:
+ astart time
+ afinish time
» We need to select the maximum number of activities that can be performed
by a single person, assuming one activity at a time.
Key Idea of the Greedy Technique
» The greedy strategy here is:
Always pick the activity that finishes earliest (among the remaining
ones).
Why?
» If we choose the activity that finishes earliest, it leaves the most room for
other activities to fit afterward.

Rohini College of Engineering and Technology

https://www.tutorialspoint.com/data_structures_algorithms/greedy_algorithms.htm

24CS301 — Data Structures and Algorithms

» This ensures the maximum number of non-overlapping activities can be
chosen.
Algorithm Steps
 Sort all activities by their finish times (earliest finishing activity comes first).
 Select the first activity (since it finishes earliest).
» For each next activity:
+ Ifits start time > finish time of the last selected activity, then select it.
» Otherwise, skip it.
« Continue until all activities are checked.
Example
Input:
arr[] = {{5,9}.{1,2}.{3,4}.{0,6}.{5,7}{8,9}}
Sorted Activities: {1,2}, {3,4},{0,6},{5,7},{5,9}.{8.9}
Select First activity {1,2}

Continue selecting

« Next, A2 (3-4) — valid (starts after 2)
 Next, A4 (5-7) — valid (starts after 4)
« Next, A5 (8-9) — valid (starts after 7)

+ Skip A6 (5-9) and A3 (0-6) because they overlap X
Final Selected Set:(Al: 1-2), (A2: 3-4), (A4: 5-7), (A5: 8-9)
Time Complexity

» Overall: O(n log n)

Rohini College of Engineering and Technology

