
UNIT V APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS  

5.2 ONE DIMENSIONAL HEAT EQUATION 

One dimensional heat equation is       
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( , )u x t The temperature distribution at any point x from one end at time t.

The various Possible Solution of 1-D heat equation. 

(i) u(x ,t) = 
tppxpx CeBeAe
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(ii)u(x ,t )= tpCepxBpxA
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(iii)u(x ,t) = Ax + B 

The boundary and initial conditions. 

 i) 1(0, ) u t k C

ii) 2( , ) u l t k C

iii) ( ,0) ( )u x f x

The correct solution is  
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( , ) cos sin   p tu x t A px B px Ce

The steady state solution in 1-D heat equation: 

Solution:  
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Integrating twice we get ( )  u x Ax B
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A rod of length l has its ends A and B are kept at 0 C  and 100 C  until steady state condition prevail. If the 

temperature at B is reduced suddenly to 0 C  and kept so while that of A is maintained. Find the temperature 

( , )u x t at a distance x from A and at time t. 

Solution: 

The 1-D heat equation is 
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To find steady state solution ( ,0) ( )u x u x  

In steady state t=0 then 0
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Integrating twice we get ( ) (1)  u x Ax B  

The boundary conditions are i) (0) 0u C    ii) ( ) 100u l C  

Applying  condn (i) in (1) 

(1) (0) 0  u B 0B  

Sub B in (1) 

( ) (2) u x Ax  

Applying  condn (ii) in (2) 

( ) u l Al
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Sub A in (2) 
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The boundary and initial conditions are 

i) (0, ) 0u t C  



 ii) ( , ) 100u l t C  

 iii) 
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The correct solution is  
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( , ) cos sin (1)  p tu x t A px B px Ce
 

Apply condn. (i) in (1) 

(0, ) cos0 sin 0 u t A B 
2 2 p tCe
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Here 
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0, 0 0   p tC e A
 

Sub A in (1) 
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Apply condn. (ii) in (2) 
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Sub p in (2) 
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The most general solution is  
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Apply condn (iii) in (3)  
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This is Fourier sine series of f(x) in (0,l) 
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Sub bn in (3) 
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This is the required temperature.
 

The ends A and B of a rod l cm long have their temperatures kept at 30 C and 80 C , until steady state 

conditions prevail. The temperature of the end B is suddenly reduced to 60 C and that of A is increased to 

40 C . Find the steady state temperature distribution in the rod after time t.
 

Solution: 

The 1-D heat equation is 
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To find steady state solution 1 ( ,0) ( )u x u x  

In steady state t=0 then 0





u

t
 

2 2 2
2

2 2 2
0 0 0

 
    

 

u u d u

x x dx
 

Integrating twice we get ( ) (1)  u x Ax B  

The boundary conditions are i) (0) 30u C    ii) ( ) 80u l C  

Applying  condn (i) in (1) 

(1) (0) 0  u B 30B  

Sub B in (1) 

( ) 30 (2)  u x Ax  

Applying  condn (ii) in (2) 

( ) 30 u l Al 
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Sub A in (2) 
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( ) 30 ( )  

x
u x f x
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This ( )u x  will be treated as the initial conditions ( ,0) ( )u x f x  

To find steady state solution 2 ( ,0) ( )u x u x  

Integrating twice we get ( ) (3)  tu x Ax B  

The boundary conditions are i) (0) 40tu C    ii) ( ) 60tu l C  

Applying  condn (i) in (3) 

(3) (0) 0  tu B 40B  

Sub B in (1) 

( ) 40 (4)  tu x Ax  

Applying  condn (ii) in (4) 
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Sub A in (2) 
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This ( )tu x  will be treated as the transient state temperature. 

 The required temperature is  
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The boundary and initial conditions are 

i) (0, ) 40u t C  

 ii) ( , ) 60u l t C  
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Apply condn (i) in (5)  
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Sub A in (5) 
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Apply condn (ii) in (6) 
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Sub p in (6) 
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The most general solution is 
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Apply condn (iii) in (7) 
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To find bn: 
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Sub bn in (7) 
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