

2.7 Label Propagation

Label Propagation is a graph-based algorithm used mainly for community detection in networks or graphs. Let's go step by step and explain it clearly.

1. What is Label Propagation?

Label Propagation is a fast, iterative algorithm that assigns labels to nodes in a network to detect communities (groups of nodes that are densely connected internally).

- Each node has a label.
- Initially, each node can have a unique label.
- Nodes iteratively adopt the label that most of their neighbors have.
- Over time, labels propagate through the network, forming communities.

2. Key Idea

- Nodes with many connections to the same label will adopt that label.
- Eventually, nodes in the same community share the same label.
- It is unsupervised, so no prior information about communities is needed.

3. How It Works (Step by Step)

1. Initialization:

Assign a unique label to each node.

Example: Node A → label A, Node B → label B, etc.

2. Iteration:

- For each node:

- Look at the labels of its neighbors.
- Update its label to the most frequent label among neighbors.
- If there's a tie, pick randomly among the most frequent labels.

3. Convergence:

Repeat until labels no longer change or until a maximum number of iterations is reached.

4. Output:

Nodes with the same label form a community.

4. Example

Consider a small graph:

A—B—C

| |

D E

- Initial labels: A→A, B→B, C→C, D→D, E→E
- Iteration 1:
 - B sees A and C → adopts the label that is most frequent among neighbors → could become A or C
 - D sees A → adopts label A
 - E sees C → adopts label C
- Iteration 2+: labels propagate until stable communities:
 - Community 1: {A, B, D}
 - Community 2: {C, E}

5. Advantages

- Very fast and scalable for large networks.
- Simple and easy to implement.
- No prior knowledge of the number of communities is needed.

6. Disadvantages

- Results can be non-deterministic due to random tie-breaking.
- Sensitive to network structure; sometimes unstable communities.
- Not ideal for graphs with very weak community structures.

7. Applications

- Social network analysis (finding friend groups)
- Biological networks (protein interaction communities)
- Recommender systems (grouping similar users/items)
- Communication networks (detecting clusters)

