Case Study

Data Structures in Wearable Health Devices, Pacemakers, and DSP

Applications
1. Introduction

Modern wearable health devices, pacemakers, and digital signal processing (DSP)
systems rely heavily on efficient data management. Real-time monitoring, signal
filtering, and data logging require careful selection of data structures to ensure

speed, memory efficiency, and reliability.

Data structures are used to store, access, and process sensor data efficiently.
Choosing the right data structure can mean the difference between a device that

performs in real-time and one that fails to deliver accurate results.
Key Areas Covered in This Case Study:

1. Pacemaker data buffering
2. Data structures in wearable health device firmware

3. DSP filter coefficient management

2. Pacemaker Data Buffering
2.1 Overview

Pacemakers are implantable devices that monitor a patient’s heart rhythm and provide
electrical pulses to maintain a regular heartbeat. These devices must store recent

heart activity data to detect irregularities and ensure proper pacing.
2.2 Data Structures Used

1. Circular Buffer (Ring Buffer)

o Stores incoming heart rate readings temporarily.
I —————————————

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

o When the buffer is full, new data overwrites the oldest data.

o Ensures memory is used efficiently, preventing overflow.
2. Queue

o Can be used for event logging (e.g., arrhythmia detection).

o FIFO (First In First Out) ensures earliest events are processed first.
3. Structs

o Group related data (e.g., timestamp, heart rate, pulse amplitude).

o Makes processing more organized.
2.3 Implementation Example (Pseudocode)

#define BUFFER_SIZE 100

typedef struct {
int heartRate;
int pulseAmplitude;
char timestamp[20];
} HeartData;

HeartData buffer[BUFFER_SIZE];

int start = 0, end = 0;

void insertData(HeartData data) {
buffer[end] = data;
end = (end + 1) % BUFFER_SIZE;
if (end == start) {
start = (start + 1) % BUFFER_SIZE; // overwrite oldest

HeartData readData() {
HeartData data = buffer[start];

1 ——
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

start = (start + 1) % BUFFER_SIZE;

return data;

2.4 Advantages

« Efficient memory usage
« Real-time data processing

o Prevents data loss for latest readings
2.5 Limitations

o Limited buffer size

e Older data is lost when buffer overflows

3. Data Structures in Firmware for Wearable Health Devices
3.1 Overview

Wearable devices like smartwatches and fithess trackers monitor multiple parameters
(heart rate, steps, oxygen level) and process data in real-time. Firmware must

efficiently store, access, and process this continuous data stream.
3.2 Common Data Structures

1. Array

o Stores sequential sensor readings (heart rate, steps, Sp02).

o Allows fast indexed access.
2. Queue / Circular Buffer

o Temporarily holds streaming sensor data for processing or display.
3. Linked List

o Useful for event-driven logging, e.g., sudden heartbeat spikes.

o Allows dynamic insertion and deletion of events.

1 ——
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

4. Structs

o Organizes related sensor data into a single unit:

typedef struct {
int heartRate;
int steps;
float oxygenLevel;
char timestamp[20];

} SensorData;
3.3 Real-Time Processing

« Sensor data must be processed without delay.
« Using efficient data structures, devices perform calculations, filtering, and
event detection quickly.

3.4 Advantages

» Fast access to sensor data
« Low memory usage for continuous monitoring

« Easy to manage dynamic events
3.5 Limitations

e Limited memory on wearable devices

o Must balance speed vs memory efficiency

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

4. DSP Filter Coefficient Handling Using Data Structures
4.1 Overview

Digital Signal Processing (DSP) filters are used in wearable devices to filter noise and
extract meaningful data (like heart signals). Filters use coefficients to perform

calculations on signal samples.
4.2 Data Structures Used

1. Array / Matrix
o Stores filter coefficients.
o Supports efficient arithmetic operations on signals.
2. Circular Buffer
o Maintains recent input samples needed for convolution or filtering.
o Ensures oldest samples are automatically replaced.
3. Structs

o Organize filter parameters: coefficients, order, states, etc.
4.3 Example: FIR Filter Coefficient Handling

#define N 5
float coeff[N] = {0.1, 0.15, 0.5, 0.15, 0.1};
float buffer[N] = {0};

float applyFilter(float newSample) {
for (inti = N-1;i > 0; i--)
buffer[i] = buffer[i-1];

buffer[0] = newSample;

float result = 0;
for (inti=0; i <N; i++)
result += coeff[i] * buffer[i];

return result;
|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

4.4 Advantages

» Efficient signal processing
o Minimal memory usage

o Supports real-time calculations
4.5 Limitations

o Filter size increases memory usage

o Complex filters may require more CPU cycles

Comparison Table of Data Structures in These Applications

Application Data Structure Used |Purpose / Benefit
Pacemaker Data|/Circular Buffer, Queue,|Real-time heart data storage,
Buffering Struct overwrite safely

Wearable Health Device||Array, Queue, Linked||Manage sensor data, dynamic

Firmware List, Struct event logging

DSP Filter Coefficient|Array, Circular Buffer,|Store coefficients, manage recent

Handling Struct samples

o Data structures play a critical role in embedded systems and wearable
devices.

« Circular buffers, arrays, linked lists, and structs are widely used for
efficient memory and real-time processing.

» Proper selection of data structures ensures:

o Real-time performance
|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

o Memory efficiency

o Accuracy and reliability in health monitoring devices
Future Scope:

o Integration with AI algorithms for predictive health monitoring

« Advanced dynamic memory management for more complex wearable devices

1 ——
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

