
24EE404 – IOT SENSORS AND DEVICES  

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1 

 

 Arduino’s Serial Port and Serial Communication 

Introduction to Serial Communication 

Serial communication is a method of transmitting data between a computer and Arduino or 

between two devices using a single data line. Arduino has a built-in UART (Universal 

Asynchronous Receiver-Transmitter) that allows serial communication through its TX 

(Transmit) and RX (Receive) pins. 

Types of Serial Communication in Arduino 

1. UART (Universal Asynchronous Receiver-Transmitter) – Uses TX and RX pins for 

data transmission. 

2. I2C (Inter-Integrated Circuit) – Uses two pins, SDA (A4) and SCL (A5), for 

communication with multiple devices. 

3. SPI (Serial Peripheral Interface) – Uses MOSI, MISO, and SCK for high-speed data 

exchange. 

Working with Serial Communication in Arduino 

1. Initializing Serial Communication 

To enable serial communication in Arduino, use: 

void setup() { 

    Serial.begin(9600);  // Start serial communication at 9600 baud rate 

} 

Here, 9600 is the baud rate (bits per second). Other common values are 115200, 57600, 38400. 

2. Sending Data via Serial Monitor 

You can send data from Arduino to the Serial Monitor using: 

void loop() { 

    Serial.println("Hello, Arduino!");  // Print message to Serial Monitor 

    delay(1000); 

} 

 Serial.print() → Prints text without a newline. 

 Serial.println() → Prints text with a newline. 

 

 



24EE404 – IOT SENSORS AND DEVICES  

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2 

 

3. Receiving Data from Serial Monitor 

To read input from the Serial Monitor: 

cpp 

CopyEdit 

void loop() { 

    if (Serial.available() > 0) {  // Check if data is received 

        String data = Serial.readString();  // Read input as a string 

        Serial.print("You entered: "); 

        Serial.println(data); 

    } 

} 

 Serial.available() → Checks if data is available. 

 Serial.read() → Reads a single byte. 

 Serial.readString() → Reads the entire input as a string. 

Example: Controlling an LED using Serial Communication 

This program turns an LED ON or OFF based on user input. 

int ledPin = 13; 

 

void setup() { 

    Serial.begin(9600);  // Start Serial communication 

    pinMode(ledPin, OUTPUT); 

} 

 

void loop() { 

    if (Serial.available() > 0) { 

        char command = Serial.read();  // Read single character input 

        if (command == '1') { 

            digitalWrite(ledPin, HIGH);  // Turn LED ON 

            Serial.println("LED ON"); 

        } else if (command == '0') { 

            digitalWrite(ledPin, LOW);  // Turn LED OFF 

            Serial.println("LED OFF"); 

        } 

    } 

} 

Output of the Given Program 

Scenario 1: User Inputs '1' in Serial Monitor 



24EE404 – IOT SENSORS AND DEVICES  

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3 

 

User Input: 1 

Output in Serial Monitor: 

LED ON 

LED Status: ✅ Turns ON (Pin 13 is set to HIGH) 

Scenario 2: User Inputs '0' in Serial Monitor 

User Input: 0 

Output in Serial Monitor: 

LED OFF 

LED Status: ❌ Turns OFF (Pin 13 is set to LOW) 

Explanation of Output Behavior 

1. When the user enters '1' in the Serial Monitor and presses Enter, 
o The program reads the input using Serial.read(). 
o Since command == '1', Arduino turns ON the LED (pin 13). 
o "LED ON" is printed on the Serial Monitor. 

2. When the user enters '0', 
o The program reads the input. 
o Since command == '0', Arduino turns OFF the LED (pin 13). 
o "LED OFF" is printed on the Serial Monitor. 

Example Serial Monitor Output 

1  [ENTER]   

LED ON   

 

0  [ENTER]   

LED OFF   

 

1  [ENTER]   

LED ON   

 

0  [ENTER]   

LED OFF   

Applications of Serial Communication 

 Debugging Arduino programs using the Serial Monitor. 

 Sending sensor data to a computer for logging. 

 Controlling Arduino remotely using a computer or Bluetooth module. 

 Communicating between multiple Arduino boards. 


