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1.3 MECHANICAL TRANSLATIONAL AND ROTATIONAL SYSTEMS 

 The general classification of mechanical system is of two types namely 

translational and rotational systems. 

 

Figure 1.3.1 Classification of mechanical system 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.21] 

MECHANICAL TRANSLATIONAL SYSTEMS 

The model of mechanical translational systems can obtain by using three basic 

elements mass, spring and dashpot. When a force is applied to a translational mechanical 

system, it is opposed by opposing forces due to mass, friction and elasticity of the system. 

The force acting on a mechanical body is governed by Newton’s second law of motion. 

For translational systems it states that the sum of forces acting on a body is zero. 

Force balance equations of idealized elements: 

Inertia force, fm(t) 

Consider an ideal mass element shown in figure, which has negligible friction and 

elasticity. Let a force be applied on it. The mass will offer an opposing force which is 

proportional to acceleration of a body. 

 

Figure 1.3.2 Mechanical translational element: Mass 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.21] 
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Let f(t) - applied force, fm - opposing force due to mass,  

𝑓𝑚 ∝
𝑑2𝑥

𝑑𝑡2
 

 By Newton's second law,  

𝑓 = 𝑓𝑚 = 𝑀
𝑑2𝑥

𝑑𝑡2
 

Damper force, fb(t) 

Consider an ideal frictional element dash-pot shown in fig. which has negligible mass 

and elasticity. The dashpot’s opposing force which is proportional to velocity of the body. 

 

Figure 1.3.3 Mechanical translational element: Dashpot 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.23] 

Let f = applied force, f b = opposing force due to friction 

𝑓𝑏 ∝
𝑑𝑥

𝑑𝑡
 

By Newton's second law,    

𝑓 = 𝑓𝑏 = 𝐵
𝑑𝑥

𝑑𝑡
 

Spring force, fk(t) 

Consider an ideal elastic element spring is shown in fig. This has negligible mass and 

friction. 
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Figure 1.3.4 Mechanical translational element: Spring 

[Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.24] 

Let f = applied force, f k = opposing force due to elasticity 

𝑓𝑘 ∝ 𝑥 

By Newtons second law,         

𝑓 = 𝑓𝑘 = 𝐾𝑥 

According to D’Alembert’s principle, “The algebraic sum of the externally applied 

forces to any body is equal to the algebraic sum of the opposing forces restraining motion 

produced by the elements present in the body.” A simple translational mechanical system 

and its free body diagram are shown in figures 1.3.5 (a) and (b) respectively.  

 

Figure 1.3.5 Mechanical translational system and its free body diagram 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.25] 

𝑓𝑚 = 𝑀
𝑑2𝑥

𝑑𝑡2
 

𝑓𝑏 = 𝐵
𝑑𝑥

𝑑𝑡
 

𝑓𝑘 = 𝐾𝑥 

𝑓(𝑡) = 𝑓𝑚 + 𝑓𝑏 + 𝑓𝑘 = 𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝐵

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 
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MECHANICAL ROTATIONAL SYSTEM 

 The modeling of a linear passive rotational mechanical system can be obtained by 

using three basic elements: inertia, rotational spring and rotational damper. The modeling 

of a rotational mechanical system is similar to that of a translational mechanical system 

except that the elements undergo a rotational instead of a translational movement. The 

opposing torques due to inertia, rotational spring and rotational damper act on a system 

when the system is subjected to a torque. Using D’Alembert’s principle, for a linear 

passive rotational mechanical system, the sum of all the torques acting on a body is zero 

(i.e., the sum of applied torques is equal to the sum of the opposing torques on a body). 

Angular displacement, angular velocity and angular acceleration are the variables used 

to describe a linear passive rotational mechanical system. In rotational mechanical 

systems, the energy storage elements are inertia and rotational spring and the energy 

dissipating element is the rotational viscous damper. The analogous of the energy storage 

elements in ana electrical circuit are the inductors and the capacitors and the analogous 

of energy dissipating element in an electrical circuit is the resistor. 

Torque balance equations of idealized elements: 

Inertia Torque, Tj(t) 

 When a torque T(t) is applied to an inertia element J, it experiences an angular 

acceleration and it is shown in figure 1.3.6. 

 

Figure 1.3.6 Mechanical rotational element: Inertia 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.38] 

According to Newton’s second law, the inertia torque is proportional to the angular 

acceleration. 

𝑇𝑗(𝑡) ∝
𝑑2𝜃

𝑑𝑡2
 

𝑇𝑗(𝑡) = 𝐽
𝑑2𝜃

𝑑𝑡2
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where J is the moment of inertia (kg-m2/rad), θ(t) is the angular displacement (rad) and 

Tj(t) is measured in Newton-meter (N-m). 

Damping Torque, Tb(t) 

 When a torque, T(t) is applied to a damping element, B, it experiences an angular 

velocity and it is shown in figure 1.3.7. 

 

Figure 1.3.7 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.38] 

The damping torque is proportional to the angular velocity. Therefore, 

𝑇𝑏(𝑡) ∝
𝑑𝜃

𝑑𝑡
 

𝑇𝑏(𝑡) = 𝐵
𝑑𝜃

𝑑𝑡
 

where, B is the viscous friction coefficient (N-s/m), θ(t) is the angular displacement (rad). 

Damper element with two angular displacements and a single applied torque is shown in 

figure 1.3.8. 

 

Figure 1.3.8 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.39] 

𝑇𝑏(𝑡) = 𝐵 (
𝑑𝜃1
𝑑𝑡

−
𝑑𝜃2
𝑑𝑡

) 

Here, Tb(t) is measured in Newton-meter. 

Torsional/Rotational Spring Torque, Tk(t) 

When a torque T(t) is applied to a spring element, K, it experiences ana angular 

displacement and it is shown in figure 1.3.9. 
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Figure 1.3.9 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.39] 

According to Hooke’s law, spring torque is proportional to the angular displacement. 

𝑇𝑘(𝑡) ∝ 𝜃 

𝑇𝑘(𝑡) = 𝐾𝜃 

where, K is the spring constant (N-m/rad). 

A spring element with two angular displacements is given in figure 1.3.10. 

 

Figure 1.3.10 Mechanical rotational element: Dashpot 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.40] 

𝑇𝑘(𝑡) = 𝐾(𝜃1 − 𝜃2) 

Here, Tk(t) is measured in Newton-meter. 

According to D’Alembert’s principle, “The algebraic sum of the externally applied 

torques to any body is equal to the algebraic sum of the opposing torques restraining 

motion produced by the elements present in the body.” A simple rotational mechanical 

system and its free body diagram are shown in figures 1.3.11 (a) and (b) respectively. 

 

Figure 1.3.11 Mechanical rotational system and its free body diagram 

 [Source: “Control Systems Engineering” by S.Salivahanan, R.Rengaraj, G.R.Venkatakrishnan, Page: 1.40] 
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𝑇𝑗 = 𝐽
𝑑2𝜃

𝑑𝑡2
 

𝑇𝑏 = 𝐵
𝑑𝜃

𝑑𝑡
 

𝑇𝑘 = 𝐾𝜃 

𝑇(𝑡) = 𝑇𝑗 + 𝑇𝑏 + 𝑇𝑘 = 𝐽
𝑑2𝜃

𝑑𝑡2
+ 𝐵

𝑑𝜃

𝑑𝑡
+ 𝐾𝜃 

Translational mechanical system Rotational mechanical system 

Force (F) Torque (T) 

Velocity (v) Angular velocity (ω) 

Displacement (x) Angular displacement (θ) 

Mass (M) Moment of inertia (J) 

Damping coefficient (B) Rotational damping (B) 

Spring constant (K) Rotational spring constant (K) 

 


