

## 2.1 Mathematical induction:

### Statement of the principle of Mathematical Induction

Let  $P(n)$  be statement involving the natural number “ $n$ ”.

If  $P(1)$  is true.

Under the assumption that when  $P(k)$  is true,  $P(k+1)$  is true, then we conclude that a statement  $P(n)$  is true for all natural number “ $n$ ”.

Steps to prove that a statement  $P(n)$  is true for all natural numbers

**Step:1** We must prove that  $P(1)$  is true.

**Step:2** By assuming  $P(k)$  is true, we must prove that  $P(k+1)$  is also true.

**NOTE:**

**Step:1** is known as the basic step.

**Step:2** is known as inductive step.

### Problems on Mathematical Induction:

1. Show that  $1 + 2 + \dots + n = \frac{n(n+1)}{2}$  using mathematical induction.

**Solution:**

Let  $S$  be the set of positive integers.

To prove  $p(1)$  is true.

When  $n = 1$

$$\text{RHS} \Rightarrow \frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1 = \text{LHS}$$

Hence  $p(1)$  is true.

Assume that  $p(k)$  is true.

$$1 + 2 + \dots + k = \frac{k(k+1)}{2} \quad \dots (1)$$

To prove  $p(k + 1)$  is true.

Adding  $k + 1$  on both sides

$$\Rightarrow 1 + 2 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$$

$$= \frac{k(k+1)}{2} + (k + 1)$$

$$= \frac{k(k + 1) + 2(k + 1)}{2}$$

$$= \frac{(k + 1)(k + 2)}{2}$$

Hence  $p(k + 1)$  is true.

2. Show that  $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

**Solution:**

Let S be the set of positive integers.

**To prove  $p(1)$  is true.**

When  $n = 1$

$$\text{RHS} \Rightarrow \frac{n(n+1)(2n+1)}{6} = \frac{1(1+1)(2+1)}{6} = 1 = \text{LHS}$$

Hence  $p(1)$  is true.

**Assume that  $p(k)$  is true.**

$$1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6} \dots (1)$$

**To prove  $p(k + 1)$  is true.**

$$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

Adding  $(k+1)^2$  on both sides

$$\begin{aligned} \Rightarrow 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\ &= (k+1) \left[ \frac{k(2k+1)}{6} + (k+1) \right] \end{aligned}$$

$$= \frac{(k+1)}{6} [k(2k+1) + 6(k+1)]$$

$$= \frac{(k+1)}{6} [2k^2 + k + 6k + 6]$$

$$= \frac{(k+1)}{6} [2k^2 + 7k + 6]$$

$$= \frac{(k+1)}{6} [2k^2 + 4k + 3k + 6]$$

$$= \frac{(k+1)}{6} [2k(k+2) + 3(k+2)]$$

$$= \frac{(k+1)}{6} [(k+2) + (2k+3)]$$

Hence  $p(k+1)$  is true.

3. Show that  $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$

**Solution:**

Let  $S$  be the set of positive integers.

To prove  $p(1)$  is true.

When  $n = 1$

$$\text{RHS} \Rightarrow \frac{n^2(n+1)^2}{4} = \frac{1^2(1+1)^2}{4} = 1 = \text{LHS}$$

Hence  $p(1)$  is true.

Assume that  $p(k)$  is true.

$$1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4} \quad \dots (1)$$

To prove  $p(k + 1)$  is true.

$$1^3 + 2^3 + 3^3 + \dots + k^3 + (k + 1)^3 = \frac{(k+1)^2(k+2)^2}{4}$$

Adding  $(k + 1)^3$  on both sides

$$\begin{aligned}
 \Rightarrow 1^3 + 2^3 + 3^3 + \dots + k^3 + (k + 1)^3 &= \frac{k^2(k+1)^2}{4} + (k + 1)^3 \\
 &= \frac{k^2(k+1)^2 + 4(k+1)^3}{4} \\
 &= \frac{(k+1)^2}{4} [k^2 + 4(k + 1)] \\
 &= \frac{(k+1)^2}{4} [k^2 + 4k + 4] \\
 &= \frac{(k+1)^2}{4} [k^2 + 2k + 2k + 4] \\
 &= \frac{(k+1)^2}{4} [k(k + 2) + 2(k + 2)] \\
 &= \frac{(k+1)^2}{4} [(k + 2) + (k + 2)] \\
 &= \frac{(k+1)^2(k+2)^2}{4}
 \end{aligned}$$

Hence  $p(k + 1)$  is true.

4. Prove that  $n^3 - n$  is divisible by 3, using mathematical induction .

**Solution:**

Let  $S$  be the set of positive integers.

**To prove  $p(1)$  is true.**

When  $n = 1$

$\text{RHS} \Rightarrow n^3 - n = 1^3 - 1 = 0$  is divisible by 3.

Hence  $p(1)$  is true.

**Assume that  $p(k)$  is true.**

$k^3 - k$  is divisible by 3.

$$\Rightarrow k^3 - k = 3m$$

$$\Rightarrow k^3 = 3m + k \dots (1)$$

**To prove  $p(k + 1)$  is true.**

$(k + 1)^3 - (k + 1)$  is divisible by 3.

$$\Rightarrow k^3 + 1 + 3k^2 + 3k - k - 1$$

$$\Rightarrow k^3 + 3k^2 + 2k$$

$$\Rightarrow (3m + k) + 3k^2 + 2k$$

$$\Rightarrow 3m + 3k^2 + 3k$$

$$\Rightarrow 3(m + k^2 + k) \text{ is divisible by 3.}$$

Hence  $p(k + 1)$  is true.

**5. Prove that  $8^n - 3^n$  is a multiple of 5. .**

**Solution:**

Let S be the set of positive integers.

**To prove  $p(1)$  is true.**

When  $n = 1$

$RHS \Rightarrow 8^n - 3^n = 8^1 - 3^1 = 5$  is a multiple of 5 which is true.

Hence  $p(1)$  is true.

**Assume that  $p(k)$  is true.**

$8^k - 3^k$  is a multiple of 5.

$$\Rightarrow 8^k - 3^k = 5m$$

$$\Rightarrow 8^k = 5m + 3^k \dots (1)$$

**To prove  $p(k + 1)$  is true.**

$8^{k+1} - 3^{k+1}$  is a multiple of 5.

$$\Rightarrow 8 \cdot 8^k - 3 \cdot 3^k$$

$$\Rightarrow (5m + 3^k) \cdot 8 - 3 \cdot 3^k$$

$$\Rightarrow 5 \cdot 8m + 8 \cdot 3^k - 3 \cdot 3k$$

$$\Rightarrow 5 \cdot 8m + 5 \cdot 3^k$$

$\Rightarrow 5(8m + 3^k)$  is a multiple of 5.

Hence  $p(k + 1)$  is true.

### 6. State and prove Handshaking theorem.

Suppose there are “ $n$ ” people in a room,  $n \geq 1$  and that they all shake hands

with one another, prove that  $\frac{n(n-1)}{2}$  handshakes will have accrued.

**Solution:**

Let  $S$  be the set of positive integers.

To prove  $p(1)$  is true.

When  $n = 1$

$$p(1) = \frac{n(n-1)}{2} = \frac{1(1-1)}{2} = 0$$

$\Rightarrow$  there is no handshake accrued which means there is only one person.

Hence  $p(1)$  is true.

Assume that  $p(k)$  is true.

$$p(k) = \frac{k(k-1)}{2} \quad \dots (1)$$

**To prove  $p(k + 1)$  is true.**

$$p(k + 1) = \frac{(k+1)k}{2}$$

Suppose if one person entered into the room then he will shake his hand with “k” other person whenever  $p(k)$  is true.

Hence  $p(k + 1)$  is true by mathematical induction.

#### **The Well – Ordering Property:**

The validity of mathematical induction follows from the following fundamental axioms about the set of integers.

Every non – empty set of non – negative integers has a least element.

The well ordering property can often be used directly in the proof.

