Electric potential The electric field intensity E is calculated from the electric scalar potential. Fig 29. Displacement of point charge Q is an electrostatic field E In fig 29 a point charge Q is move from A to point B in an electric field E. From Coulomb's law: The force on Q is F = Q.E the work done to displacing the charge by dl is $$dw = -F dl = -QE dl \dots (1)$$ $'-'\rightarrow$ work is being done by an external agent. The potential energy required to move the charge Q from A to B is $$W = -Q \int_A^B E \ dl \ \dots (2)$$ Work done by an external source for moving a charge a Q from A to B in an electric field E is potential difference. The potential difference between A & B is V_{AB} $$V_{AB} = \frac{W}{Q} = - \int_A^B E \ dl \dots (3)$$ [work done by a unit charge] #### Note: - \triangleright In V_{AB} A → Initial point, B → final point - \triangleright V_{AB} is negative, there is a loss in potential energy, V_{AB} is positive, there is a gain in potential energy. - $\triangleright V_{AB}$ is independent of path taken \triangleright V_{AB} is measured in joules per coulomb (or) volts (v) In Fig 3 the electric field E due to a point charge Q located at the origin. $$E = \frac{Q}{4\pi\varepsilon_0 r^2}.a_r \quad \dots \tag{4}$$ Sub (4) in (3) r_B $$(3) \Longrightarrow V_{AB} = -\int_{r_A}^{r_B} \frac{Q}{4\pi\varepsilon_0 r^2} \cdot a_r \cdot dr \ a_r$$ $$= \frac{-Q}{4\pi\varepsilon_0} \int_{r_A}^{r_B} r^{-2} a_r \ dr$$ $$= \frac{-Q}{4\pi\varepsilon_0} \left[\frac{r^{-1}}{-1} \right]_{r_A}^{r_B}$$ $$= \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{r_B} - \frac{1}{r_A} \right] \qquad (5)$$ $$V_{AB} = V_B - V_A \qquad (6)$$ $V_B \& V_A \rightarrow$ Absolute potentials at B & A respectively To choose infinity as reference ie $$V_A = 0$$ $r_A \rightarrow \infty$ Sub $r_B \rightarrow r$ in eqn (5) $$V_{AB} = V = \frac{Q}{4\pi\varepsilon_0 r} \qquad \dots \tag{7}$$ In eqn (5) & (6) E points in the radial direction. Any contribution from a displacement in the θ & φ direction is $$E. dl = E \cos \alpha dl = E. dr \qquad (8)$$ $\alpha \rightarrow$ angle between E and dl #### **Conservative:** Vectors whose line integral does not depend on the path of integration are called conservative. (E is conservative) The potential at any point is the potential difference between that point and chosen point (reference point) at which the potential is zero $$V = -\int_{\infty}^{r} E. \, dl \qquad \dots \tag{9}$$ If the point charge Q is not located at the origin but at a point whose position vector is r', the potential at $V_{(x,y,z)}(or) V(r)$ at r becomes $$V(r) = \frac{Q}{4\pi\varepsilon_0|r-r'|} \qquad \dots \tag{10}$$ The electric field due to 'N' point charges located at points with position vectors $r_1, r_2 \dots r_n$. The potential at r' is obtained by superposition principle. $$V(r) = \frac{Q_1}{4\pi\varepsilon_0|r-r_1|} + \frac{Q_2}{4\pi\varepsilon_0|r-r_2|} + \dots + \frac{Q_n}{4\pi\varepsilon_0|r-r_n|}$$ $$V(r) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{n} \frac{Q_k}{|r-r_k|} \text{ (point charges)} \quad \dots (11)$$ ### **Continuous charge distributions** Line charge (potential at r) $$Q = \rho_L dl$$ $$V(r) = \frac{1}{4\pi\varepsilon_0} \int_L \frac{\rho_L(r')}{|r-r'|} dl' \qquad (12)$$ Surface charge $Q = \rho_s ds$ $$V(r) = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\rho_s(r')}{|r-r'|} ds' \dots (13)$$ Volume charge: $$Q = \rho_v dv$$ $$V(r) = \frac{1}{4\pi\varepsilon_0} \int_{v} \frac{\rho_v(r')}{|r-r'|} dv' \quad$$ (14) From eqn (7) to (14). The reference point has been choosen at infinity. If any other point is choosen as reference, equation. $(10) \Rightarrow$ $$V = \frac{Q}{4\pi\varepsilon_0 r} + C \dots (15)$$ $C \rightarrow$ Constant, ie determined at the chosen point of reference - 2. The potential v can be determined in two ways: - Charge distribution - ❖ Electric field 'E' If the charge distribution is know we use one of the eqn (10) to (15) IF 'E' is known $$V = -\int E. \, dl + C \qquad \dots (16)$$ $$V_{AB} = V_B - V_A = -\int_A^B E \, dl = \frac{W}{Q} \quad \dots (17)$$ # Relationship between E and V. Maxwell's equation The potential difference between points A and B is independent of the path taken. (From previous section) $$V_{BA} = -V_{AB}$$ ie $V_{AB} + V_{BA} = \oint E \cdot dl = 0$ $\oint_L E \cdot dl = 0 \dots (1)$ Fig30: conservative nature of an electrostatic field ie, the line integral of 'E' along a closed path is zero. No net work is done in moving a charge along a closed path in an electrostatic field. Stokes theorem $$\oint E \ dl = \oint_S (\nabla x E) \ ds = 0$$ $$\nabla x E = 0 \dots (2)$$ Any vector field satisfied eqn (1) or (2) is said to be conservative or irrotational. - $(1) \rightarrow$ Maxwell's second equation in integral form - (2) → Maxwell's second equation in point form (or) Differential form The potential $$V = -\int E \ dl$$ $$dV = -E. dl = -E_x dx - E_y dy - E_z dz$$ (3) A total charge in V(x, y, z) is the sum of partial charges with respect to x, y, z variables $$dV = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + \frac{\partial v}{\partial z} dz \dots (4)$$ Compare (3) & (4) $$E_x = -\frac{\partial v}{\partial x}$$ $E_y = -\frac{\partial v}{\partial y}$ $E_z = -\frac{\partial v}{\partial z}$ Thus $$E = -\nabla V$$ ie, Electric field intensity is the gradient of v. '-' sign indicates the direction of E is opposite to the direction in which 'v' increases. $$\nabla x \nabla V = 0$$