UNIT -4
RANDOMIZED AND PROBABILISTIC ALGORITHMS

In many real-world data science problems:

Data is huge
Exact computation is slow or impossible

Approximate answers are acceptable

Randomized and probabilistic algorithms use randomness and probability to produce fast,
memory-efficient, and scalable solutions with high accuracy.

They are widely used in:

Big data analytics
Recommendation systems
Document similarity

Web search

Streaming data

Randomized Algorithms

A Randomized Algorithm is an algorithm that uses random numbers (random choices) during

its execution to influence its behavior.

Because of randomness:

The same input may produce different execution paths

The algorithm’s performance or output is probabilistic

Randomized algorithms are especially useful in data science and big data, where

deterministic algorithms may be too slow or memory-intensive.

Why Randomized Algorithms Are Needed

Deterministic algorithms:

Always follow the same steps

Can perform poorly in worst-case scenarios

Randomized algorithms:



e Avoid worst-case inputs
e Are often simpler, faster, and more scalable

e Give highly accurate results with high probability

Key Characteristics
e Uses random bits or random numbers
e Output or runtime is probabilistic
e Performance measured using expected value

o Often one-pass and memory-efficient

Types of Randomized Algorithms
Randomized algorithms are mainly classified into two types:

e Monte Carlo Algorithms
e Las Vegas Algorithms

Monte Carlo Algorithms
Definition
e Runtime is fixed
e Output may be incorrect with a small probability
e Accuracy improves with more iterations
Characteristics
o Fast
e Approximate
o Probabilistic correctness
Key Points
o Error probability can be reduced by repeating the algorithm
e Used when approximate results are acceptable
Example

o Estimating n



o Probabilistic primality test

e Approximate counting
Advantages

e Very fast

e Easy to implement
Disadvantages

e Small chance of incorrect output

Las Vegas Algorithms
Definition

e Output is always correct

e Runtime is random
Key Points

e Uses randomness to improve average performance

e No compromise on correctness
Example

e Randomized QuickSort

o Randomized Selection Algorithm
Advantages

e Guaranteed correctness

o Efficient on average
Disadvantages

e Execution time varies

Performance Analysis of Randomized Algorithms
Expected Time Complexity
Instead of worst-case analysis, we analyze:

E[T(n)] = Expected running time



Example
Randomized QuickSort:
e Worst case: O(n?)

e Expected case: O(n log n)

Advantages of Randomized Algorithms

v Avoid adversarial inputs
v Simple design
v Scalable to big data

v Efficient for streaming data

Disadvantages

X Output not always deterministic
X Slight probability of error
X Harder to debug

Applications in Data Science
o Sampling large datasets
e Recommendation systems
e Document similarity
e Approximate query processing

e Streaming algorithms
Real-World Example
Google Search

o Uses randomized algorithms for indexing, ranking, and similarity detection

Key Difference from Monte Carlo

Monte Carlo | Las Vegas




Fixed time Random time

May be wrong | Always correct

Probabilistic Counting — Flajolet-Martin Algorithm
Problem
Count the number of distinct elements in a massive data stream.
Example:
o Unique users on a website
e Unique IP addresses

e Unique words in logs

Flajolet-Martin Algorithm (FM)
Introduction

In many data science applications, we need to count the number of distinct elements in a very
large dataset or data stream.

Examples:
e Number of unique users visiting a website
e Number of distinct IP addresses in network logs
e Number of unique search queries

Storing all elements is memory-expensive.
The Flajolet—Martin (FM) Algorithm provides an efficient probabilistic solution.

Problem Statement
Given a data stream:

X1, X2, X3, ., Xp

Estimate the number of distinct elements using:
e One pass
e Very small memory

e Acceptable approximation



Key Idea Behind Flajolet—Martin Algorithm
The algorithm is based on:
e Hashing
e Probability theory
e Trailing zeros in binary numbers
Core Observation
For a uniformly random hash value:

e Probability that a number ends with k trailing zeros is:

1

P =y

More distinct elements — higher chance of seeing more trailing zeros.

Algorithm Working (Step-by-Step)

Step 1: Hashing

Apply a uniform hash function to each stream element.
Example:

h(x) = binary hash value

Step 2: Count Trailing Zeros
For each hashed value:
e Count number of trailing zeros (from right)

Example:

Hash Value (Binary) | Trailing Zeros

101000 3
110100 2
100000 5

Step 3: Maintain Maximum



Keep track of:

R = max(trailing zeros)

Step 4: Estimate Distinct Count

Estimated number of distinct elements:

Example

Input Stream

{abcde f}
Hashed Binary Values
Element | Hash Value | Trailing Zeros
a 101100 2
b 110000 4
c 100010 1
d 111000 3

Maximum trailing zeros:

Estimated Distinct Count

2* =16

(Actual count = 6 — approximate result)

Accuracy Improvement Techniques
Problem

Single hash function — high variance
Solution

Use:



e Multiple hash functions
e Average or median of estimates
Improved Estimate

Estimated Count = Average of 2R

This significantly improves accuracy.

Advantages

v Very low memory usage
v One-pass algorithm
v Suitable for data streams

v Extremely fast

Limitations

X Approximate result
X Accuracy depends on hash quality

X Not exact for small datasets

Applications in Data Science
e Unique visitor counting
e Network traffic analysis
e Log file analytics
e Big data streaming platforms

o Database query optimization

Comparison with Exact Counting

Feature Exact Counting | Flajolet—Martin

Memory | High Very Low

Accuracy | 100% Approximate

Passes Multiple One




Scalability | Low High

MinHash Algorithm

Introduction

The MinHash (Minimum Hashing) Algorithm is a probabilistic technique used to efficiently
estimate the similarity between large sets, especially when the sets are too big to compare
directly.

It is mainly used to approximate Jaccard Similarity in:
e Document similarity
o Plagiarism detection
e Recommendation systems

e Near-duplicate detection

Jaccard Similarity (Foundation of MinHash)
Definition

Jaccard Similarity between two sets Aand B:

|ANB |

JAB =708

Problem

Computing this directly is expensive for:
e Large documents
e Huge vocabularies
e Big data collections

MinHash solves this efficiently.

Basic Idea of MinHash

MinHash compresses a large set into a small signature such that:
o The probability that two sets have the same MinHash value
o Equals their Jaccard similarity

P(MinHash(A) = MinHash(B)) = J(4,B)



Working of MinHash Algorithm
Step 1: Shingling
e Break documents into k-shingles (substrings of length k)

Example (k = 3):
DATA SCIENCE — {DAT, ATA, TA, A S, SCI, CIE, IEN, ENC, NCE}

Step 2: Hash Functions
e Choose multiple independent hash functions

hi,hy, hs, ..., hy

Step 3: Compute MinHash Values

For each set:
e Apply each hash function to all elements
e Select the minimum hash value

This forms a signature vector.

Step 4: Signature Comparison
e Compare signature vectors
e Count matching positions
Estimated similarity:

Number of matching MinHash values
Total hash functions

Similarity =

Example

Two Documents
e DocA={a,b,c,d}
e DocB={b,c, e}

Jaccard Similarity



MinHash Signatures

Hash Function | Doc A | Doc B

h 5 5
ho 3 7
hs 2 2

Matching = 2 out of 3

Estimated similarity:

~ 0.67

Wl N

(Approximate result improves with more hash functions)

Why MinHash Works
e Hash functions simulate random permutations
e Minimum element acts as a representative

e Matching minimums reflect shared elements

Advantages

v Extremely memory efficient
v Fast similarity estimation

v Scalable for large datasets
v One-pass possible

Limitations

X Approximate results
X Needs many hash functions for accuracy

X Not suitable for small datasets

Applications

e Document similarity detection



e Web crawling and indexing
e Plagiarism checking
e Recommendation systems

e Near-duplicate webpage detection

MinHash vs Jaccard (Exact)

Feature Exact Jaccard | MinHash
Accuracy | 100% Approximate
Speed Slow Fast
Memory | High Low
Scalability | Limited High

Locality-Sensitive Hashing (LSH)

Introduction

Locality-Sensitive Hashing (LSH) is a probabilistic technique used to efficiently find similar
items in very large datasets.

The main idea is:

Similar objects are mapped (hashed) to the same bucket with high probability, while
dissimilar objects are mapped to different buckets.

LSH avoids expensive pairwise comparisons, making it highly suitable for big data and data
science applications.

Why LSH is Needed

For nobjects:
o Exact similarity comparison — O(n?) time
o Impractical for large datasets

LSH reduces this to sub-linear time.

Key Concept of LSH

An LSH family of hash functions satisfies:



e P(h(x) = h(y))is high if xand yare similar

e P(h(x) = h(y))is low if xand yare dissimilar

Relationship Between MinHash and LSH
e MinHash — creates compact signatures
e LSH — efficiently searches similar signatures

MinHash + LSH is widely used for document similarity.

Working of Locality-Sensitive Hashing
Step 1: Signature Generation
Convert each document/set into a MinHash signature.
Step 2: Banding Technique
e Divide the signature into b bands
e FEach band has r rows
Total hash functions =b X r
Step 3: Hashing Bands
e FEach band is hashed into a bucket
e Documents in the same bucket are candidate pairs
Step 4: Similarity Check

e Only candidate pairs are compared using exact similarity

Probability Analysis
Probability that two documents with similarity sbecome a candidate pair:

P=1—(1-s")"

Where:
e s=Jaccard similarity
e r=rows per band

e b= number of bands



This creates an S-curve behavior.
Advantages

Vv Sub-linear search time
Vv Scalable to massive datasets
v Avoids full pairwise comparison

v Works well with high-dimensional data

Limitations

X Approximate method
X Parameter tuning required (b, r)

X False positives and false negatives possible

9. Applications
e Near-duplicate document detection
o Plagiarism detection
e Recommendation systems
e Image similarity

e Web search engines

Comparison: MinHash vs LSH

Feature MinHash LSH

Purpose Signature creation | Similarity search
Output Compact vectors | Candidate pairs
Speed Fast Very fast

Use Together | Yes Yes

Applications: Document Similarity & Recommendation Engines
1. Document Similarity
What is Document Similarity?

Document similarity measures how much two documents are alike based on their content.



It is widely used to:
e Detect plagiarism
e Remove duplicate web pages
e Improve search engine ranking

e Group related documents

Challenges

e Documents are very large

e Vocabulary size is huge

o Exact comparison is computationally expensive
Solution: Probabilistic Algorithms
Algorithms Used

1. Jaccard Similarity

2. MinHash

3. Locality-Sensitive Hashing (LSH)

Working Process
Step 1: Shingling

e Break document into small chunks (k-shingles)
Example:
DATA SCIENCE — {DAT, ATA, TA, A S, SCI, CIE, IEN, ENC, NCE}
Step 2: MinHash Signature

e Apply multiple hash functions

e Store minimum hash values

o Convert large document — small signature
Step 3: LSH Bucketing

o Divide signatures into bands

e Hash each band

¢ Similar documents fall into the same bucket



Step 4: Similarity Detection
e Compare only candidate pairs

o Compute approximate Jaccard similarity

Advantages

v Very fast
v Memory efficient

Vv Scalable to millions of documents

Real-World Examples
e Google Search — near-duplicate page detection
e Turnitin — plagiarism detection

o News aggregators — grouping similar news articles

2. Recommendation Engines

What is a Recommendation Engine?

A recommendation engine suggests relevant items to users based on:
e User preferences
e Past behavior

e Similar users or items

Types of Recommendations
1. Content-Based Filtering

2. Collaborative Filtering

Role of Probabilistic Algorithms
Large datasets make exact matching impossible.

Randomized algorithms provide:



o Fast similarity computation

o Efficient user-item matching

Algorithms Used
e MinHash
e LSH

e Randomized Sampling

e Approximate Nearest Neighbors

How It Works (Example)
Step 1: Represent Users/Items

e Convert users or products into sets

o Example: Movies watched, products bought
Step 2: MinHash Signatures

e Create compact representation
Step 3: LSH Bucketing

e Similar users/items fall into same bucket
Step 4: Recommendation

e Recommend items liked by similar users
Advantages

Vv Real-time recommendations
Vv Scales to millions of users

v Low memory usage

Real-World Examples
e Netflix — movie recommendations
e Amazon — product suggestions
e Spotify — music recommendations

e YouTube — video suggestions



