
UNIT – 4 

RANDOMIZED AND PROBABILISTIC ALGORITHMS 

 

In many real-world data science problems: 

 Data is huge 

 Exact computation is slow or impossible 

 Approximate answers are acceptable 

 Randomized and probabilistic algorithms use randomness and probability to produce fast, 

memory-efficient, and scalable solutions with high accuracy. 

They are widely used in: 

 Big data analytics 

 Recommendation systems 

 Document similarity 

 Web search 

 Streaming data 

 

Randomized Algorithms 

A Randomized Algorithm is an algorithm that uses random numbers (random choices) during 

its execution to influence its behavior. 

Because of randomness: 

 The same input may produce different execution paths 

 The algorithm’s performance or output is probabilistic 

Randomized algorithms are especially useful in data science and big data, where 

deterministic algorithms may be too slow or memory-intensive. 

 

Why Randomized Algorithms Are Needed 

Deterministic algorithms: 

 Always follow the same steps 

 Can perform poorly in worst-case scenarios 

Randomized algorithms: 



 Avoid worst-case inputs 

 Are often simpler, faster, and more scalable 

 Give highly accurate results with high probability 

 

Key Characteristics 

 Uses random bits or random numbers 

 Output or runtime is probabilistic 

 Performance measured using expected value 

 Often one-pass and memory-efficient 

 

Types of Randomized Algorithms 

Randomized algorithms are mainly classified into two types: 

 Monte Carlo Algorithms 

 Las Vegas Algorithms 

 

Monte Carlo Algorithms 

Definition 

 Runtime is fixed 

 Output may be incorrect with a small probability 

 Accuracy improves with more iterations 

Characteristics 

 Fast 

 Approximate 

 Probabilistic correctness 

Key Points 

 Error probability can be reduced by repeating the algorithm 

 Used when approximate results are acceptable 

Example 

 Estimating π 



 Probabilistic primality test 

 Approximate counting 

Advantages 

 Very fast 

 Easy to implement 

Disadvantages 

 Small chance of incorrect output 

 

Las Vegas Algorithms 

Definition 

 Output is always correct 

 Runtime is random 

Key Points 

 Uses randomness to improve average performance 

 No compromise on correctness 

Example 

 Randomized QuickSort 

 Randomized Selection Algorithm 

Advantages 

 Guaranteed correctness 

 Efficient on average 

Disadvantages 

 Execution time varies 

 

Performance Analysis of Randomized Algorithms 

Expected Time Complexity 

Instead of worst-case analysis, we analyze: 

𝐸[𝑇(𝑛)] = Expected running time 

 



Example 

Randomized QuickSort: 

 Worst case: O(n²) 

 Expected case: O(n log n) 

 

 Advantages of Randomized Algorithms 

✔ Avoid adversarial inputs 

✔ Simple design 

✔ Scalable to big data 

✔ Efficient for streaming data 

 

Disadvantages 

✖ Output not always deterministic 

✖ Slight probability of error 

✖ Harder to debug 

 

Applications in Data Science 

 Sampling large datasets 

 Recommendation systems 

 Document similarity 

 Approximate query processing 

 Streaming algorithms 

 

Real-World Example 

Google Search 

 Uses randomized algorithms for indexing, ranking, and similarity detection 

 

Key Difference from Monte Carlo 

Monte Carlo Las Vegas 



Fixed time Random time 

May be wrong Always correct 

 

Probabilistic Counting – Flajolet-Martin Algorithm 

Problem 

Count the number of distinct elements in a massive data stream. 

Example: 

 Unique users on a website 

 Unique IP addresses 

 Unique words in logs 

 

Flajolet-Martin Algorithm (FM) 

Introduction 

In many data science applications, we need to count the number of distinct elements in a very 

large dataset or data stream. 

Examples: 

 Number of unique users visiting a website 

 Number of distinct IP addresses in network logs 

 Number of unique search queries 

Storing all elements is memory-expensive. 

The Flajolet–Martin (FM) Algorithm provides an efficient probabilistic solution. 

 

Problem Statement 

Given a data stream: 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 

 

Estimate the number of distinct elements using: 

 One pass 

 Very small memory 

 Acceptable approximation 



 

Key Idea Behind Flajolet–Martin Algorithm 

The algorithm is based on: 

 Hashing 

 Probability theory 

 Trailing zeros in binary numbers 

Core Observation 

For a uniformly random hash value: 

 Probability that a number ends with k trailing zeros is: 

𝑃 =
1

2𝑘
 

 

More distinct elements → higher chance of seeing more trailing zeros. 

 

Algorithm Working (Step-by-Step) 

Step 1: Hashing 

Apply a uniform hash function to each stream element. 

Example: 

ℎ(𝑥) = binary hash value 

 

Step 2: Count Trailing Zeros 

For each hashed value: 

 Count number of trailing zeros (from right) 

Example: 

Hash Value (Binary) Trailing Zeros 

101000 3 

110100 2 

100000 5 

 

Step 3: Maintain Maximum 



Keep track of: 

𝑅 = max⁡(trailing zeros) 

 

Step 4: Estimate Distinct Count 

Estimated number of distinct elements: 

2𝑅  

 

Example 

Input Stream 

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} 

 

Hashed Binary Values 

Element Hash Value Trailing Zeros 

a 101100 2 

b 110000 4 

c 100010 1 

d 111000 3 

Maximum trailing zeros: 

𝑅 = 4 

 

Estimated Distinct Count 

24 = 16 

 

(Actual count = 6 → approximate result) 

 

Accuracy Improvement Techniques 

Problem 

Single hash function → high variance 

Solution 

Use: 



 Multiple hash functions 

 Average or median of estimates 

Improved Estimate 

Estimated Count = Average of 2𝑅𝑖 

 

This significantly improves accuracy. 

 

Advantages 

✔ Very low memory usage 

✔ One-pass algorithm 

✔ Suitable for data streams 

✔ Extremely fast 

 

Limitations 

✖ Approximate result 

✖ Accuracy depends on hash quality 

✖ Not exact for small datasets 

 

Applications in Data Science 

 Unique visitor counting 

 Network traffic analysis 

 Log file analytics 

 Big data streaming platforms 

 Database query optimization 

 

Comparison with Exact Counting 

Feature Exact Counting Flajolet–Martin 

Memory High Very Low 

Accuracy 100% Approximate 

Passes Multiple One 



Scalability Low High 

MinHash Algorithm 

Introduction 

The MinHash (Minimum Hashing) Algorithm is a probabilistic technique used to efficiently 

estimate the similarity between large sets, especially when the sets are too big to compare 

directly. 

It is mainly used to approximate Jaccard Similarity in: 

 Document similarity 

 Plagiarism detection 

 Recommendation systems 

 Near-duplicate detection 

 

Jaccard Similarity (Foundation of MinHash) 

Definition 

Jaccard Similarity between two sets 𝐴and 𝐵: 

𝐽(𝐴, 𝐵) =
∣ 𝐴 ∩ 𝐵 ∣

∣ 𝐴 ∪ 𝐵 ∣
 

 

Problem 

Computing this directly is expensive for: 

 Large documents 

 Huge vocabularies 

 Big data collections 

 MinHash solves this efficiently. 

 

Basic Idea of MinHash 

MinHash compresses a large set into a small signature such that: 

 The probability that two sets have the same MinHash value 

 Equals their Jaccard similarity 

𝑃(MinHash(𝐴) = MinHash(𝐵)) = 𝐽(𝐴, 𝐵) 

 



 

Working of MinHash Algorithm 

Step 1: Shingling 

 Break documents into k-shingles (substrings of length 𝑘) 

Example (k = 3): 

DATA SCIENCE → {DAT, ATA, TA , A S, SCI, CIE, IEN, ENC, NCE} 

 

Step 2: Hash Functions 

 Choose multiple independent hash functions 

ℎ1, ℎ2, ℎ3, … , ℎ𝑛 

 

Step 3: Compute MinHash Values 

For each set: 

 Apply each hash function to all elements 

 Select the minimum hash value 

This forms a signature vector. 

 

Step 4: Signature Comparison 

 Compare signature vectors 

 Count matching positions 

Estimated similarity: 

Similarity =
Number of matching MinHash values

Total hash functions
 

 

Example 

Two Documents 

 Doc A = {a, b, c, d} 

 Doc B = {b, c, e} 

Jaccard Similarity 

𝐽 =
2

5
= 0.4 



 

MinHash Signatures 

Hash Function Doc A Doc B 

h₁ 5 5 

h₂ 3 7 

h₃ 2 2 

Matching = 2 out of 3 

Estimated similarity: 

2

3
≈ 0.67 

 

(Approximate result improves with more hash functions) 

 

Why MinHash Works 

 Hash functions simulate random permutations 

 Minimum element acts as a representative 

 Matching minimums reflect shared elements 

 

Advantages 

✔ Extremely memory efficient 

✔ Fast similarity estimation 

✔ Scalable for large datasets 

✔ One-pass possible 

 

Limitations 

✖ Approximate results 

✖ Needs many hash functions for accuracy 

✖ Not suitable for small datasets 

 

Applications 

 Document similarity detection 



 Web crawling and indexing 

 Plagiarism checking 

 Recommendation systems 

 Near-duplicate webpage detection 

 

MinHash vs Jaccard (Exact) 

Feature Exact Jaccard MinHash 

Accuracy 100% Approximate 

Speed Slow Fast 

Memory High Low 

Scalability Limited High 

 

Locality-Sensitive Hashing (LSH) 

Introduction 

Locality-Sensitive Hashing (LSH) is a probabilistic technique used to efficiently find similar 

items in very large datasets. 

The main idea is: 

Similar objects are mapped (hashed) to the same bucket with high probability, while 

dissimilar objects are mapped to different buckets. 

LSH avoids expensive pairwise comparisons, making it highly suitable for big data and data 

science applications. 

 

Why LSH is Needed 

For 𝑛objects: 

 Exact similarity comparison → O(n²) time 

 Impractical for large datasets 

LSH reduces this to sub-linear time. 

 

Key Concept of LSH 

An LSH family of hash functions satisfies: 



 𝑃(ℎ(𝑥) = ℎ(𝑦))is high if 𝑥and 𝑦are similar 

 𝑃(ℎ(𝑥) = ℎ(𝑦))is low if 𝑥and 𝑦are dissimilar 

 

Relationship Between MinHash and LSH 

 MinHash → creates compact signatures 

 LSH → efficiently searches similar signatures 

MinHash + LSH is widely used for document similarity. 

 

Working of Locality-Sensitive Hashing 

Step 1: Signature Generation 

Convert each document/set into a MinHash signature. 

Step 2: Banding Technique 

 Divide the signature into b bands 

 Each band has r rows 

Total hash functions = 𝑏 × 𝑟 

Step 3: Hashing Bands 

 Each band is hashed into a bucket 

 Documents in the same bucket are candidate pairs 

Step 4: Similarity Check 

 Only candidate pairs are compared using exact similarity 

 

Probability Analysis  

Probability that two documents with similarity 𝑠become a candidate pair: 

𝑃 = 1 − (1 − 𝑠𝑟)𝑏 

 

Where: 

 𝑠= Jaccard similarity 

 𝑟= rows per band 

 𝑏= number of bands 



This creates an S-curve behavior. 

Advantages 

✔ Sub-linear search time 

✔ Scalable to massive datasets 

✔ Avoids full pairwise comparison 

✔ Works well with high-dimensional data 

 

Limitations 

✖ Approximate method 

✖ Parameter tuning required (b, r) 

✖ False positives and false negatives possible 

 

9. Applications 

 Near-duplicate document detection 

 Plagiarism detection 

 Recommendation systems 

 Image similarity 

 Web search engines 

 

Comparison: MinHash vs LSH 

Feature MinHash LSH 

Purpose Signature creation Similarity search 

Output Compact vectors Candidate pairs 

Speed Fast Very fast 

Use Together Yes Yes 

 

Applications: Document Similarity & Recommendation Engines 

1. Document Similarity 

What is Document Similarity? 

Document similarity measures how much two documents are alike based on their content. 



It is widely used to: 

 Detect plagiarism 

 Remove duplicate web pages 

 Improve search engine ranking 

 Group related documents 

 

Challenges 

 Documents are very large 

 Vocabulary size is huge 

 Exact comparison is computationally expensive 

Solution: Probabilistic Algorithms 

Algorithms Used 

1. Jaccard Similarity 

2. MinHash 

3. Locality-Sensitive Hashing (LSH) 

 

Working Process 

Step 1: Shingling 

 Break document into small chunks (k-shingles) 

Example: 

DATA SCIENCE → {DAT, ATA, TA , A S, SCI, CIE, IEN, ENC, NCE} 

Step 2: MinHash Signature 

 Apply multiple hash functions 

 Store minimum hash values 

 Convert large document → small signature 

Step 3: LSH Bucketing 

 Divide signatures into bands 

 Hash each band 

 Similar documents fall into the same bucket 



 

Step 4: Similarity Detection 

 Compare only candidate pairs 

 Compute approximate Jaccard similarity 

 

Advantages 

✔ Very fast 

✔ Memory efficient 

✔ Scalable to millions of documents 

 

Real-World Examples 

 Google Search – near-duplicate page detection 

 Turnitin – plagiarism detection 

 News aggregators – grouping similar news articles 

 

2. Recommendation Engines 

What is a Recommendation Engine? 

A recommendation engine suggests relevant items to users based on: 

 User preferences 

 Past behavior 

 Similar users or items 

 

Types of Recommendations 

1. Content-Based Filtering 

2. Collaborative Filtering 

 

Role of Probabilistic Algorithms 

Large datasets make exact matching impossible. 

Randomized algorithms provide: 



 Fast similarity computation 

 Efficient user-item matching 

 

Algorithms Used 

 MinHash 

 LSH 

 Randomized Sampling 

 Approximate Nearest Neighbors 

 

How It Works (Example) 

Step 1: Represent Users/Items 

 Convert users or products into sets 

 Example: Movies watched, products bought 

Step 2: MinHash Signatures 

 Create compact representation 

Step 3: LSH Bucketing 

 Similar users/items fall into same bucket 

Step 4: Recommendation 

 Recommend items liked by similar users 

Advantages 

✔ Real-time recommendations 

✔ Scales to millions of users 

✔ Low memory usage 

Real-World Examples 

 Netflix – movie recommendations 

 Amazon – product suggestions 

 Spotify – music recommendations 

 YouTube – video suggestions 


