
24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

1.5. POINTERS

Definition

A pointer is a variable that stores the memory address of another variable.

Instead of storing a value directly, it stores the location where the value is kept.

Syntax:

 data_type *pointer_name;

Example:

int *ptr;

float *fptr;

char *cptr;

 Initialization of Pointer

int a = 20;

int *p = &a; // p stores the address of a

Features of Pointers

 A pointer stores the address of another variable.

 The * operator is used to access the value stored at the address

(dereferencing).

 The & operator is used to get the address of a variable.

 Pointers allow dynamic memory handling.

 They support pointer arithmetic (e.g., p++).

Dereferencing a Pointer

Dereferencing means accessing the value stored at the address held by the

pointer.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

 cout << *p; // prints 20

Example:

#include <iostream>

class PointerDemo

{

public:

 int a; // normal variable

 int *p; // pointer variable

 void assign()

 {

 a = 10;

 p = &a; // pointer stores address of a

 }

 void display()

{

 cout << "Value of a = " << a << endl;

 cout << "Address of a = " << p << endl;

 cout << "Value using pointer = " << *p << endl;

 }

};

void main()

{

 PointerDemo O; // object

 O.assign();

 O.display();

}

Pointer Arithmetic

Pointers can be incremented or decremented.

 p++ → moves to the next memory location of the same data type

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

 p-- → moves to the previous memory location

Example:

 int *p;

 p++; // moves by 4 bytes (size of int)

Null Pointer

A null pointer is a pointer that points to nothing. A null pointer is a pointer

that does not point to any valid memory location. nullptr ensures the pointer is not

pointing to garbage memory.

 int *p = NULL;

Void Pointer

A void pointer is a general-purpose pointer that can store the address of any

data type.

 syntax: void *ptr;

It must be type-casted before dereferencing.

Example:

int x = 10;

float y = 5.5;

void *ptr;

ptr = &x;

cout << "Integer value: " << *(int*)ptr << endl;

ptr = &y;

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

cout << "Float value: " << *(float*)ptr << endl;

Output:

Integer value: 10

Float value: 5.5

Dangling Pointer

A pointer that points to memory location that has been freed or deleted is called a

dangling pointer.

int *p = new int(10);

delete p; // memory freed

p = NULL; // pointer reset (avoids dangling pointer)

Pointers and Arrays

An array name itself acts like a pointer to its first element.

 int a[3] = {10, 20, 30};

 int *p = a; // same as &a[0]

 cout << *(p+1); // prints 20

Pointers to Functions

Pointers can store addresses of functions.

 int add(int x, int y);

 int (*fp)(int, int) = add;

Advantages of Pointers

 Useful for dynamic memory allocation.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

 Improve efficiency by passing large data structures by reference.

 Enable implementation of data structures like linked lists, trees, and graphs.

 Help in accessing array elements efficiently.

Disadvantages of Pointers

 Incorrect pointer handling can cause crashes.

 Dangling pointers may lead to unpredictable behavior.

 Pointer misuse can cause memory leaks.

 Complex to understand for beginners.

