24CS402- DATA STRUCTURES USING C++

1.5. POINTERS
Definition

A pointer is a variable that stores the memory address of another variable.

Instead of storing a value directly, it stores the location where the value is kept.
Syntax:

data_type *pointer_name;
Example:

int *ptr;
float *fptr;

char *cptr;
Initialization of Pointer

inta = 20;

int *p = &a; // p stores the address of a

Features of Pointers

e A pointer stores the address of another variable.

e The * operator is used to access the value stored at the address

(dereferencing).

« The & operator is used to get the address of a variable.
o Pointers allow dynamic memory handling.

o They support pointer arithmetic (e.g., p++).

Dereferencing a Pointer

Dereferencing means accessing the value stored at the address held by the
pointer.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

cout << *p; // prints 20

Example:
#include <iostream>

class PointerDemo

{

public:
int a; // normal variable
int *p; // pointer variable

void assign()

{
a = 10;
p = &a; // pointer stores address of a
b
void display()
{
cout << "Value of a =" << a << endl;
cout << "Address of a =" << p << endl;
cout << "Value using pointer = " << *p << endl;
b
b
void main()
{
PointerDemo O; // object
O.assign();
O.display();
b

Pointer Arithmetic
Pointers can be incremented or decremented.

e« p++ — moves to the next memory location of the same data type

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

e p-- — moves to the previous memory location
Example:

int *p;

p++; // moves by 4 bytes (size of int)
Null Pointer

A null pointer is a pointer that points to nothing. A null pointer is a pointer
that does not point to any valid memory location. nullptr ensures the pointer is not

pointing to garbage memory.
int *p = NULL;
Void Pointer

A void pointer is a general-purpose pointer that can store the address of any

data type.
syntax: void *ptr;
It must be type-casted before dereferencing.

Example:

int x = 10;

floaty = 5.5;

void *ptr;

ptr = &x;

cout << "Integer value: " << *(int*)ptr << endl;

ptr = &y;

r___|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

cout << "Float value: " << *(float*)ptr << endl;
Output:

Integer value: 10

Float value: 5.5
Dangling Pointer

A pointer that points to memory location that has been freed or deleted is called a

dangling pointer.
int *p = new int(10);
delete p; // memory freed
p = NULL; // pointer reset (avoids dangling pointer)
Pointers and Arrays
An array name itself acts like a pointer to its first element.

int a[3] = {10, 20, 303};
int *p = a; // same as &a[0]
cout << *(p+1); // prints 20

Pointers to Functions
Pointers can store addresses of functions.

int add(int x, inty);
int (*fp)(int, int) = add;

Advantages of Pointers

o Useful for dynamic memory allocation.
I ————
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

« Improve efficiency by passing large data structures by reference.

« Enable implementation of data structures like linked lists, trees, and graphs.

» Help in accessing array elements efficiently.
Disadvantages of Pointers

« Incorrect pointer handling can cause crashes.

« Dangling pointers may lead to unpredictable behavior.

o Pointer misuse can cause memory leaks.

« Complex to understand for beginners.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

