1.2 Computational Complexity

Computational complexity is a core area of computer science focused on analyzing and
classifying algorithms based on their efficiency. It studies how the time and space (memory)
requirements of algorithms scale with the size of the input.

» Big-O -big O notation

» Big-Q -big omega notation
> Big-0 Big-Theta notation

S.No.

Big O

It IS like (<=)
rate of growth of an
algorithm is less than or

Big Omega (Q)

It is like (>=)
rate of growth is greater
than or equal to a

Theta (©)

It is like (==)
meaning the rate of growth
is equal to a specified value.

1. equal to a specific value. specified value.
The upper bound of a The bounding of a functlo_n
UL from above and below is
function is represented by The lower bound of a
.) L represented by theta
Big O notation. Only the function is represented by :
: . . ! notation. The exact
time taken function is Omega notation. ic behavior is d
bounded by above. B asymptotic behavior is done
2. ' by this theta notation.
A Big Omega (Q2) - Lower Big Theta (®) - Tight
3 Big O - Upper Bound Bound Bound
To find Big O notation of To find Big Omega An algorithm's general
time/space,. we consider notation of time/space,. time/space cannot be
the case when an we consider the case represented as Theta
algorithm takes maximum when an algorithm takes notation, if its order of
4. time/space. minimum time/space. growth varies with input.
Mathematically: Big Oh Mathematically: Big Mathematically - Big Theta
is 0 <= f(n) <= Cg(n) for Omega is 0 <= Cg(n) <= is 0 <= C2g(n) <= f(n) <=
5. alln>=n0 f(n) forall n >=n0 Clg(n) forn >=n0

Types of Computational Complexity
a.Time Complexity
e Measures how execution time grows with input size.
o Expressed using asymptotic notation (Big-O, Big-Q, Big-0®).

Example:
Linear search on an array of size n — time complexity O(n)

b.Space Complexity
e Measures memory used by an algorithm.
e Includes:
o Input space
o Auxiliary (extra) space

Example:
Using an extra array of size n — space complexity O(n)

Big-O Notation (O)
Definition

Big-O represents the upper bound of an algorithm’s time (or space) complexity.
It tells us the worst-case performance.

Mathematical Definition

An algorithm has time complexity O(f(n)) if:
T(n) <e- f(n), foralln > ny

where
e cand n, are positive constants.
Meaning

“The algorithm will not take more than this amount of time.”

Big-Q Notation (Q2)
Definition

Big-Q represents the lower bound of
It describes the best-case performance.

Mathematical Definition

An algorithm has time complexity Q(f(n)) if:
T(n) = c- f(n), foralln > ng

Meaning

“The algorithm will take at least this much time.”
Big-@® Notation (O)

Definition

Big-@ gives a tight bound.

It represents both upper and lower bounds.
Mathematical Definition

An algorithm has time complexity @(f(n)) if:

c1-f(n) <T(n) <ey- f(n), foralln >
Meaning

“The algorithm’s growth rate is exactly this.”

1. Example for Big-O Notation (O)

Example: Linear Search
for i in range(n):
if arr[i] == key:

return i

an algorithm’s

complexity.

Explanation:
« If the element is not present or present at the last position,
e The loop runs n times.

Complexity:
e Big-O:0(n)

Meaning:

The algorithm will not take more than n steps.

2. Example for Big-€2 Notation (Q)

Example: Linear Search
if arr[0] == key:
return 0

Explanation:

e The element is found at the first position.
e Only one comparison is needed.

Complexity:
e Big-Q:0(1)
Meaning:

The algorithm will take at least constant time.

Example for Big-® Notation (®)

Example: Printing all elements
for i in range(n):

print(arr[i])
Explanation:

e Loop always runs n times.
o Best, average, and worst cases are the same.

Complexity:
e Big-0: 0 (n)
Meaning:

The algorithm grows exactly linearly with input size.

