
1.2 Computational Complexity

Computational complexity is a core area of computer science focused on analyzing and

classifying algorithms based on their efficiency. It studies how the time and space (memory)

requirements of algorithms scale with the size of the input.

 Big-O -big O notation

 Big-Ω -big omega notation

 Big-Θ Big-Theta notation

S.No. Big O Big Omega (Ω) Theta (Θ)

1.

It is like (<=)

rate of growth of an

algorithm is less than or

equal to a specific value.

It is like (>=)

rate of growth is greater

than or equal to a

specified value.

It is like (==)

meaning the rate of growth

is equal to a specified value.

2.

The upper bound of a

function is represented by

Big O notation. Only the

time taken function is

bounded by above. B

The lower bound of a

function is represented by

Omega notation.

The bounding of a function

from above and below is

represented by theta

notation. The exact

asymptotic behavior is done

by this theta notation.

3.
Big O - Upper Bound

Big Omega (Ω) - Lower

Bound

Big Theta (Θ) - Tight

Bound

4.

To find Big O notation of

time/space,. we consider

the case when an

algorithm takes maximum

time/space.

To find Big Omega

notation of time/space,.

we consider the case

when an algorithm takes

minimum time/space.

An algorithm's general

time/space cannot be

represented as Theta

notation, if its order of

growth varies with input.

5.

Mathematically: Big Oh

is 0 <= f(n) <= Cg(n) for

all n >= n0

Mathematically: Big

Omega is 0 <= Cg(n) <=

f(n) for all n >= n0

Mathematically - Big Theta

is 0 <= C2g(n) <= f(n) <=

C1g(n) for n >= n0

Types of Computational Complexity

a.Time Complexity

 Measures how execution time grows with input size.

 Expressed using asymptotic notation (Big-O, Big-Ω, Big-Θ).

Example:
Linear search on an array of size n → time complexity O(n)

 b.Space Complexity

 Measures memory used by an algorithm.

 Includes:

o Input space

o Auxiliary (extra) space

Example:
Using an extra array of size n → space complexity O(n)

Big-O Notation (O)

Definition

Big-O represents the upper bound of an algorithm’s time (or space) complexity.

It tells us the worst-case performance.

Mathematical Definition

An algorithm has time complexity O(f(n)) if:

where

 c and n₀ are positive constants.

Meaning

“The algorithm will not take more than this amount of time.”

Big-Ω Notation (Ω)

Definition

Big-Ω represents the lower bound of an algorithm’s complexity.

It describes the best-case performance.

Mathematical Definition

An algorithm has time complexity Ω(f(n)) if:

Meaning

“The algorithm will take at least this much time.”

Big-Θ Notation (Θ)

Definition

Big-Θ gives a tight bound.

It represents both upper and lower bounds.

Mathematical Definition

An algorithm has time complexity Θ(f(n)) if:

Meaning

“The algorithm’s growth rate is exactly this.”

1. Example for Big-O Notation (O)

Example: Linear Search

for i in range(n):

 if arr[i] == key:

 return i

Explanation:

 If the element is not present or present at the last position,

 The loop runs n times.

Complexity:

 Big-O: O(n)

Meaning:

The algorithm will not take more than n steps.

2. Example for Big-Ω Notation (Ω)

Example: Linear Search

if arr[0] == key:

 return 0

Explanation:

 The element is found at the first position.

 Only one comparison is needed.

Complexity:

 Big-Ω: Ω(1)

 Meaning:

The algorithm will take at least constant time.

Example for Big-Θ Notation (Θ)

Example: Printing all elements

for i in range(n):

 print(arr[i])

Explanation:

 Loop always runs n times.

 Best, average, and worst cases are the same.

Complexity:

 Big-Θ: Θ(n)

Meaning:

The algorithm grows exactly linearly with input size.

