

1.2 Computational Complexity

Computational complexity is a core area of computer science focused on analyzing and classifying algorithms based on their efficiency. It studies how the **time** and **space** (memory) requirements of algorithms scale with the size of the input.

- Big-O -big O notation
- Big- Ω -big omega notation
- Big- Θ Big-Theta notation

S.No.	Big O	Big Omega (Ω)	Theta (Θ)
1.	It is like (\leq) rate of growth of an algorithm is less than or equal to a specific value.	It is like (\geq) rate of growth is greater than or equal to a specified value.	It is like ($=$) meaning the rate of growth is equal to a specified value.
2.	The upper bound of a function is represented by Big O notation. Only the time taken function is bounded by above. B	The lower bound of a function is represented by Omega notation.	The bounding of a function from above and below is represented by theta notation. The exact asymptotic behavior is done by this theta notation.
3.	Big O - Upper Bound	Big Omega (Ω) - Lower Bound	Big Theta (Θ) - Tight Bound
4.	To find Big O notation of time/space,, we consider the case when an algorithm takes maximum time/space.	To find Big Omega notation of time/space,, we consider the case when an algorithm takes minimum time/space.	An algorithm's general time/space cannot be represented as Theta notation, if its order of growth varies with input.
5.	Mathematically: Big Oh is $0 \leq f(n) \leq Cg(n)$ for all $n \geq n_0$	Mathematically: Big Omega is $0 \leq Cg(n) \leq f(n)$ for all $n \geq n_0$	Mathematically - Big Theta is $0 \leq C_2g(n) \leq f(n) \leq C_1g(n)$ for $n \geq n_0$

Types of Computational Complexity

a. Time Complexity

- Measures **how execution time grows** with input size.
- Expressed using **asymptotic notation** (Big-O, Big- Ω , Big- Θ).

Example:

Linear search on an array of size $n \rightarrow$ time complexity **O(n)**

b. Space Complexity

- Measures **memory used** by an algorithm.
- Includes:
 - Input space
 - Auxiliary (extra) space

Example:

Using an extra array of size $n \rightarrow$ space complexity **O(n)**

Big-O Notation (O)

Definition

Big-O represents the **upper bound** of an algorithm's time (or space) complexity. It tells us the **worst-case performance**.

Mathematical Definition

An algorithm has time complexity **O(f(n))** if:

$$T(n) \leq c \cdot f(n), \quad \text{for all } n \geq n_0$$

where

- c and n_0 are positive constants.

Meaning

“The algorithm will **not take more than** this amount of time.”

Big-Ω Notation (Ω)

Definition

Big-Ω represents the **lower bound** of an algorithm's complexity.
It describes the **best-case performance**.

Mathematical Definition

An algorithm has time complexity $\Omega(f(n))$ if:

$$T(n) \geq c \cdot f(n), \quad \text{for all } n \geq n_0$$

Meaning

“The algorithm will take **at least** this much time.”

Big-Θ Notation (Θ)

Definition

Big-Θ gives a **tight bound**.

It represents both **upper and lower bounds**.

Mathematical Definition

An algorithm has time complexity $\Theta(f(n))$ if:

$$c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n), \quad \text{for all } n \geq n_0$$

Meaning

“The algorithm's growth rate is **exactly** this.”

1. Example for Big-O Notation (O)

Example: Linear Search

for i in range(n):

 if arr[i] == key:

 return i

Explanation:

- If the element is **not present** or present at the **last position**,
- The loop runs **n times**.

Complexity:

- **Big-O:** $O(n)$

Meaning:

The algorithm will **not take more than n steps**.

2. Example for Big- Ω Notation (Ω)

Example: **Linear Search**

```
if arr[0] == key:  
    return 0
```

Explanation:

- The element is found at the **first position**.
- Only **one comparison** is needed.

Complexity:

- **Big- Ω :** $\Omega(1)$

Meaning:

The algorithm will take **at least constant time**.

Example for Big- Θ Notation (Θ)

Example: **Printing all elements**

```
for i in range(n):  
    print(arr[i])
```

Explanation:

- Loop always runs **n times**.
- Best, average, and worst cases are the same.

Complexity:

- **Big-Θ:** $\Theta(n)$

Meaning:

The algorithm grows **exactly linearly** with input size.