
24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

UNIT III – ARRAYS AND STRINGS IN C

Arrays: Initialization - One dimensional, Two dimensional, and Multi-dimensional arrays -

String: Basics, declaring and initializing strings, string handling functions: standard and user

defined functions

3.1 INTRODUCTION TO ARRAYS

Arrays

Array in C is one of the most used data structures in C programming. It is a simple and

fast way of storing multiple values under a single name.

What is Array in C?

An array in C is a fixed-size collection of similar data items stored in contiguous memory

locations. It can be used to store the collection of primitive data types such as int, char, float, etc.,

and also derived and user-defined data types such as pointers, structures, etc.

a) Array Declaration

In C, we have to declare the array like any other variable before using it. We can declare

an array by specifying its name, the type of its elements, and the size of its dimensions.

Syntax of Array Declaration

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

where N is the number of dimensions.

The C arrays are static in nature, i.e., they are allocated memory at the compile time.

Example of Array Declaration

b) Array Initialization

Initialization in C is the process to assign some initial value to the variable. When the

array is declared or allocated memory, the elements of the array contain some garbage value.

So, we need to initialize the array to some meaningful value. There are multiple ways in which

we can initialize an array in C.

1. Array Initialization with Declaration

In this method, we initialize the array along with its declaration. We use an initializer

list to initialize multiple elements of the array. An initializer list is the list of values enclosed

within braces { } separated b a comma.

// C Program to illustrate the array declaration

#include <stdio.h>

int main()

{

// declaring array of integers

int arr_int[5];

// declaring array of characters

char arr_char[5];

return 0;

}

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

2. Array Initialization with Declaration without Size

If we initialize an array using an initializer list, we can skip declaring the size of the array

as the compiler can automatically deduce the size of the array in these cases.

The size of the array in these cases is equal to the number of elements present in the

initializer list as the compiler can automatically deduce the size of the array.

Example of Array Initialization in C

// C Program to demonstrate array initialization

#include <stdio.h>

int main()

{

// array initialization using initialier list

int arr[5] = { 10, 20, 30, 40, 50 };

// array initialization using initializer list without specifying size

int arr1[] = { 1, 2, 3, 4, 5 };

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

c) Accessing Array Elements

We can access any element of an array in C using the array subscript operator [] and the

index value i of the element.

One thing to note is that the indexing in the array always starts with 0, i.e., the first element is

at index 0 and the last element is at N – 1 where N is the number of elements in the array.

Example of Accessing Array Elements using Array Subscript Operator C

Output

array_name [index];

C Program to illustrate element access using array

// subscript

#include <stdio.h>

int main()

{

// array declaration and initialization

int arr[5] = { 15, 25, 35, 45, 55 };

// accessing element at index 2 i.e 3rd element

printf("Element at arr[2]: %d\n", arr[2]);

// accessing element at index 4 i.e last element

printf("Element at arr[4]: %d\n", arr[4]);

// accessing element at index 0 i.e first element

printf("Element at arr[0]: %d", arr[0]);

return 0;

}

Element at arr[2]: 35

Element at arr[4]: 55

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

d) Update Array Element

We can update the value of an element at the given index i in a similar way to accessing

an element by using the array subscript operator [] and assignment operator =.

Example :

int arr[5] = {2, 4, 8, 16, 32};

arr[1]= 1;

// The new array will be {2, 1, 8, 16, 32}

e) C Array Traversal

Traversal is the process in which we visit every element of the data structure. For C array

traversal, we use loops to iterate through each element of the array.

Array Traversal using for Loop

Element at arr[0]: 15

array_name[i] = new_value;

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT III

How to use Array in C?

The following program demonstrates how to use an array in the C programming

language:

Output

// C Program to demonstrate the use of array

#include <stdio.h>

int main()

{

// array declaration and initialization

int arr[5] = { 10, 20, 30, 40, 50 };

// modifying element at index 2

arr[2] = 100;

// traversing array using for loop

printf("Elements in Array: ");

for (int i = 0; i < 5; i++) {

printf("%d ", arr[i]);

}

return 0;

}

Elements in Array: 10 20 100 40 50

