ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT III - DEVOPS AND CI/CD CONCEPTS [9 hours]

What is DevOps? Why is it used in industry?,CI/CD — Continuous Integration and
Deployment, Introduction to GitHub Actions / Jenkins, Introduction to Docker and
Dockerfile, Automating build and test for an app

INTRODUCTION TO DOCKER
DOCKER
Docker is an open platform that uses operating-system-level virtualization to
deliver software in packages called containers. Docker 1s an open-source
containerization platform used to develop, package, ship, and run applications in
lightweight containers. A Docker container includes the application code along with all
its dependencies, libraries, and configuration files, ensuring that the application runs
consistently across different environments. The key components are:
e Images: Read-only templates used to create containers, which include the
application and all its dependencies.
e C(Containers: Running instances of an image, isolated from the host system and
other containers, but sharing the host OS kernel.
e Docker Hub/Registry: A cloud service or private server for sharing and
downloading popular Docker images.
Need for Docker
Before Docker, applications were deployed directly on physical servers or virtual
machines, leading to various challenges such as dependency conflicts and environment
inconsistencies.
Problems in Traditional Deployment
e Environment inconsistency is one of the major problems in traditional deployment.
Applications often behave differently in development, testing, and production
environments due to differences in operating systems, software versions, or system

configurations. This leads to the common issue known as “it works on my machine”,

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

where an application runs successfully on a developer’s system but fails in
production, causing delays and unexpected errors.

e Dependency conflicts occur when multiple applications require different versions of
the same software library or framework on a single system. In traditional deployment,
dependencies are installed directly on the host machine, making it difficult to manage
multiple versions simultaneously. Installing or upgrading one dependency may break
another application, leading to instability and maintenance challenges.

e Complex installation and configuration is another drawback of traditional
deployment. Applications often require lengthy setup procedures involving manual
installation of software, libraries, environment variables, and configuration files.
These manual steps increase the chances of human error and make the deployment
process time-consuming, especially for new team members or system administrators.

e Poor resource utilization is commonly observed in traditional systems. Physical
servers or virtual machines are usually dedicated to a single application, leaving CPU,
memory, and storage resources underutilized. Virtual machines also require separate
operating systems, which consume additional resources and increase infrastructure
costs.

o Slow deployment and startup time is a significant issue in traditional deployment.
Installing applications and their dependencies takes considerable time, and virtual
machines can take several minutes to boot. As a result, application updates, patches,
or scaling operations lead to delays and sometimes require downtime, reducing
overall system efficiency.

e Difficult scalability limits the ability of traditional deployment models to handle
changing workloads. Scaling an application requires manual provisioning of new
servers or virtual machines and configuring them appropriately. This process is slow
and inflexible, making it hard to respond quickly to sudden increases or decreases in
user demand.

e Lack of application isolation creates stability and security concerns. Since multiple

applications share the same operating system and system resources, a failure or

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

security breach in one application can affect others. This shared environment makes it
difficult to ensure reliable and secure application execution.

e Inconsistent testing and debugging arises because test environments rarely match
production environments exactly. Differences in system configurations or installed
software can cause bugs that appear only after deployment. This makes debugging
difficult and reduces confidence in testing results.

e Difficult rollback and version management is another challenge in traditional
deployment. Reverting to a previous version of an application often requires
uninstalling or reconfiguring software manually. Managing multiple versions of an
application simultaneously is complex and time-consuming.

e High maintenance overhead increases operational costs and effort. Systems require
frequent updates, patching, and monitoring to maintain performance and security.
Over time, configuration drift occurs, where systems deviate from their original setup,
making maintenance even more difficult.

e Limited portability restricts the movement of applications between different
environments or platforms. Applications are tightly coupled with the underlying
system, making migration to new servers or cloud platforms difficult and requiring
reinstallation and reconfiguration.

e Security challenges are amplified in traditional deployment due to shared
environments and manual security management. Applying security patches and
enforcing application-specific security policies is complex, increasing the risk of
vulnerabilities and system compromise.

How Docker Solves Traditional Deployment Problems
e Docker packages applications with their dependencies, which is one of its most

important advantages. Using Docker images, an application is bundled along with
all required libraries, frameworks, runtime environments, and configuration files.
This eliminates dependency conflicts because each application carries its own

dependencies instead of relying on the host system. As a result, applications run

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

independently without interfering with one another, even if they require different
software versions.

e Docker ensures environment consistency by providing the same runtime
environment across development, testing, and production. Since Docker containers
run based on images, the application behaves identically regardless of where the
container is deployed. This removes the “it works on my machine” problem and
ensures reliable testing and deployment across different platforms and operating
systems.

e Docker enables faster application startup compared to traditional virtual
machines. Containers share the host operating system kernel instead of running a
full guest OS, which significantly reduces startup time. As a result, containers can
start in seconds, allowing developers to deploy, stop, and restart applications
quickly, improving productivity and reducing downtime.

e Docker provides better resource utilization by allowing multiple containers to
run on the same host system while sharing system resources efficiently. Unlike
virtual machines, containers do not require separate operating systems, which
reduces memory and CPU overhead. This lightweight nature allows more
applications to run on the same hardware, lowering infrastructure costs and
improving performance.

e Docker makes scaling and deployment easy and efficient. Containers can be
quickly replicated to handle increased workloads, enabling horizontal scaling. With
tools like Docker Compose and orchestration platforms, applications can be
deployed, updated, or rolled back with minimal effort. This flexibility allows
organizations to respond quickly to changing user demands and supports modern
DevOps and microservices architectures.

Containerization
Containerization is a lightweight virtualization technique in which applications run
in isolated user spaces called containers, sharing the host operating system kernel.

Key Characteristics

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Each container runs independently, meaning that applications inside one container

are isolated from applications in other containers. Every container has its own file
system, processes, network interfaces, and environment variables. This isolation
ensures that a failure, crash, or security issue in one container does not affect other
containers running on the same host system, thereby improving application stability
and reliability.

Containers use fewer resources than virtual machines because they share the host
operating system kernel instead of running separate guest operating systems. Unlike
virtual machines, which require their own OS and consume significant memory and
CPU resources, containers are lightweight and efficient. This allows multiple
containers to run on the same system with minimal overhead, resulting in better
performance and reduced infrastructure costs.

Containers start and stop quickly due to their lightweight nature. Since containers
do not need to boot a full operating system, they can be started or stopped in a matter
of seconds. This fast startup time is particularly useful for rapid application
deployment, continuous integration and delivery (CI/CD), scaling applications, and
quick recovery from failures.

Containers are portable across platforms, meaning they can run consistently on
different environments such as development machines, testing servers, cloud
platforms, and production systems. As long as Docker or a compatible container
runtime is available, the same container image can be executed without modification.
This portability ensures consistent behavior across platforms and eliminates

environment-related issues.

Docker vs Virtual Machine

Feature Docker Virtual Machine
Architecture Shares host OS kernel Has separate guest OS
Startup time Seconds Minutes

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Resource usage Low High
Size Lightweight Heavy
Performance Near native Slower

Docker Architecture

Docker follows a client-server architecture. The Docker client communicates with
a background process, the Docker Daemon, which does the heavy lifting of building,
running, and managing your containers. This communication happens over a REST API,
typically via UNIX sockets on Linux (e.g., /var/run/docker.sock) or a network interface

for remote management.

& Client

& Docker
|

n)ﬁ Container

|

& runC RGEIEEERGHIETEETTE

|

COLLIT RO E T UGl Port Mapping: 8080 (host) = 80 (container)

The Core Architectural Model
e Docker Client: This is your command center. When you type commands like
docker run or docker build, you're using the Docker Client.
e Docker Host: This is the machine where the magic happens. It runs the Docker

Daemon (dockerd) and provides the environment to execute and run containers.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Docker Registry: This is a remote repository for storing and distributing your
Docker images.

This interaction forms a simple yet powerful loop: you use the Client to issue commands
to the Daemon on the Host, which can pull images from a Registry to run as containers.
Core Components:
1. The Docker Daemon (dockerd):
The Docker Daemon is the persistent background process that acts as the brain of your
Docker installation.

e [t runs on the Docker Host.

e It listens for API requests from the Docker Client.

e [t manages all Docker objects: images, containers, networks, and volumes.

e [t can communicate with other daemons to manage Docker services in a

multi-host environment (like a Docker Swarm cluster).

2. The Docker Client:
The Docker Client is the primary interface through which users interact with Docker.
This 1s most commonly the Command Line Interface (CLI).

e [t translates user commands like docker ps into REST API requests.

e These requests are sent to the Docker Daemon for processing.

e A single client can communicate with multiple daemons.
Common Commands:

e docker build: Builds an image from a Dockerfile.

e docker pull: Pulls an image from a registry.

e docker run: Creates and starts a container from an image.
3. The Docker Host
The Docker Host is the physical or virtual machine that provides the complete
environment for executing and running containers. It comprises:

e The Operating System (and its kernel).

e The Docker Daemon.

e Images that have been pulled or built.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Running Containers.
e Networks and Storage components.
4. The Docker Registry
A Docker Registry is a stateless, scalable storage system for Docker images.
e Public Registry: The default public registry is Docker Hub, which contains a
vast collection of community and official images.
e Private Registries: Organizations often use private registries (like Harbor,
AWS ECR, or Google Artifact Registry) to store proprietary images for
security and control.
Image Lifecycle Commands:
e docker pull <image name>: Downloads an image from a configured registry to
your local Docker Host.
e docker push <image name>: Uploads a local image to a registry.
Docker Objects
Whenever we are using docker, we are creating and using images, containers,

volumes, networks, and other objects.

Containers

r 3

L

v

1. Images

An image is a read-only, inert template that contains the instructions for creating a
Docker container. Think of it as a blueprint or a class in object-oriented programming.

e [t's built from a Dockerfile, a simple text file defining the steps to assemble the

image.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e [mages are built in layers, where each instruction in the Dockerfile corresponds
to a layer. This layered architecture makes builds and distribution incredibly
efficient.

2. Containers
A container is a runnable, live instance of an image. If an image is the blueprint, a
container is the house built from that blueprint.

® You can create, start, stop, move, or delete containers using the Docker API or
CLIL

e Fach container is isolated from other containers and the host machine, having
its own filesystem, networking, and process space.

e You can run multiple containers from the same image.

3. Storage
Since a container's writable layer is ephemeral (data is lost when the container is deleted),
Docker provides robust solutions for data persistence. Storage driver controls and

manages the images and containers on our docker host.

ACTIVE STORAGE p—

CONTAINER

STORAGE DRIVER

NO DATA

Types of Docker Storage
Docker provides multiple storage options to persist, share, and manage data across
containers and hosts.
e Volumes: The preferred mechanism. Volumes are managed by Docker and
stored in a dedicated area on the host filesystem (e.g., /var/lib/docker/volumes/

on Linux). They are designed to survive the container lifecycle.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Bind Mounts: Allow you to map a file or directory from the host machine
directly into a container. This is very useful for development, where you might
want to share source code with a container.

e tmpfs Mounts: In-memory storage that is temporary and never written to the

host filesystem. Useful for sensitive data or high-performance temporary files.

Docker Networking

Docker networking provides complete isolation for docker containers. It means a

user can link a docker container to many networks. It requires very few OS instances to

run the workload.

Types of Docker Network

1.

Bridge: It is the default network driver. We can use this when different containers
communicate with the same docker host.

Host: When you don't need any isolation between the container and host then it is
used.

Overlay: For communication with each other, it will enable the swarm services.

None: It disables all networking.

. macvlan: Assigns a unique MAC address to a container, making it appear as a

physical device on your network.

Example:

You run the command: docker run -d -p 80:80 nginx

1.

Client: The Docker Client sends a REST API request to the Docker Daemon to
create and run a container from the nginx image.
Daemon: The Daemon receives the request. It first checks if the nginx image

exists locally on the Host.

. Registry (Pull): If the image is not found locally, the Daemon contacts the

configured Registry (Docker Hub by default) and pulls the nginx image.
Runtime (containerd): The Daemon hands the image and run-configuration over

to containerd.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5. Runtime (runc): containerd uses runc to create a new container. runc interfaces
with the Linux kernel to create isolated namespaces and limit resources with
cgroups.

6. Execution: The container is started. Docker maps port 80 of the host to port 80 of
the nginx container, as requested by the -p 80:80 flag. The Nginx process runs as
PID 1 inside the container's isolated PID namespace.

Basic Docker Commands

Some commonly used Docker commands are:

1. docker version

The docker version command is used to display detailed information about the installed
Docker software. It shows the version of the Docker client and Docker server (daemon),
along with details such as API version, build time, and platform. This command helps
verify whether Docker is installed correctly and running on the system.

2. docker pull image name

The docker pull command is used to download a Docker image from a Docker registry
such as Docker Hub. If the specified image is not available locally, Docker fetches it from
the registry and stores it on the local system. This command is commonly used before
running a container to ensure the required image is available.

3. docker images

The docker images command lists all Docker images present on the local machine. It
displays information such as the image name, tag, image ID, creation date, and size. This
command helps users manage and identify available images that can be used to create
containers.

4. docker run image name

The docker run command is used to create and start a new container from a specified
Docker image. If the image is not available locally, Docker automatically pulls it from the
registry before running the container. This command also allows options such as port
mapping, volume mounting, and environment variable configuration.

5. docker ps

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

The docker ps command displays a list of all currently running containers. It provides
information such as container ID, image name, command, status, and port mappings. This
command is useful for monitoring active containers and managing their execution.

6. docker stop container_id

The docker stop command is used to safely stop a running container. It sends a

termination signal to the container’s main process, allowing it to shut down gracefully

before stopping. This ensures that applications running inside the container are properly
closed.

7. docker rm container_id

The docker rm command removes one or more stopped containers from the system. It

helps free up system resources and keep the Docker environment clean. A container must

be stopped before it can be removed using this command.

Advantages of Docker

e Platform independent: Docker containers package the application along with its
dependencies, allowing it to run consistently across different operating systems and
environments. This ensures the same behavior in development, testing, and
production.

e Faster deployment: Docker containers are lightweight and start within seconds since
they do not require a full operating system. This significantly reduces deployment
time and speeds up application releases.

e Easy scalability: Docker allows applications to be scaled easily by running multiple
container instances. Containers can be quickly started or stopped to handle varying
workloads.

e Efficient resource usage: Containers share the host operating system kernel, which
reduces memory and CPU overhead. This enables better utilization of system
resources compared to virtual machines.

e Supports microservices architecture: Docker allows each microservice to run in its
own container with independent dependencies. This improves flexibility, fault

isolation, and easier maintenance of applications.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

e Improves DevOps workflow: Docker enables seamless integration between
development and operations teams by providing consistent environments. It supports

continuous integration and continuous deployment (CI/CD) practices.

24CS405 APPLIED SOFTWARE ENGINEERING WITH DESIGN AND DEVOPS PRACTICES



