24CS402- DATA STRUCTURES USING C++

5.3 Hashing

e Hashing is a technique used for performing insertion, deletions, and

finds in constant average time.

e The Hash table data structure is an array of some fixed size,

containing the keys.

e AKkey is a value associated with each record.
5.3.1 Hash Functions

A Hashing function is a key - to - address transformation, which acts upon
a given key to compute the relative position of the key in an array.

A simple Hash function

HASH (KEYVALUE) = KEYVALUE MOD TABLESIZE
Example:

Hash (92)

Hash (92) = 92 mod 10 =2

The key value 92 is placed in the relative location 2

Properties of good Hash
function A good Hash Function
should

— Minimize collisions
— Be easy and quick to compute
— Distribute keys evenly in the hash table
Some of the methods of Hashing Function
1. Module Division
2. Mid - square Method
3. Folding Method

4. PSEUDO Random Method

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

5. Radix
Transformation
Applications of Hash
tables

* Database systems

* Symbol tables

* Network processing algorithms
* Browse caches

COLLISIONS

» Collision occurs when a hash value of a record being inserted hashes to
an address that already contain a different record. (ie) When two key

values hash to the same position.

Example : 37,24 .7

Index Slot
0

1

2 37

3

4 24

- 37 is placed in index 2

- 24 is placed in index 4

- Now inserting 7

-Hash (7)=7mod 5=2
- 2 collides

Collision Resolution strategies

The process of finding another position for the collide record is called Collision
Resolution strategy.

Two categories

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

1. Open hashing - separate chaining

* Each bucket in the hash table is the head of a linked list.

* All elements that hash to same value are linked together.
2. Closed hashing - Open addressing, rehashing and extendible hashing.

* Collide elements are stored at another slot in the table.

* It ensures that all elements are stored directly into the hash table.
5.12 Separate Chaining

» Separate chaining is an open hashing technique.
» A pointer field is added to each record location.
» When an overflow occurs this pointer is set to point to overflow blocks

making a linked list.

» In this method, the table can never overflow, since the linked list are only

extended upon the arrival of new keys.
Insertion

» To perform the insertion of an element, traverse down the appropriate list

to check whether the element is already in place.

» If the element turns to be a new one, it is inserted either at the front
of the list or at the end of the list. If it is duplicate element, an extra
field is kept.

Advantages and Disadvantages

Advantages

» More number of elements can be inserted as it uses array of linked lists.

» Collision resolution is simple and efficient.

Disadvantages

» It requires pointers, that occupies more space.

» It takes more effort to perform search, since it takes time to

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS402- DATA STRUCTURES USING C++

evaluate the hash function and also to traverse the list

Program

void insert(int value)

{

//create a newnode with value

struct node *newNode = malloc(sizeof(struct
node)); newNode->data = value;

newNode->next = NULL;

//calculate hash key int

key = value % size;

//check if chain[key] is empty
if(chain[key] == NULL)

chain[key] = newNode;
//collision

else

{

//add the node at the end of chain[key].
struct node *temp = chain[key];

while(temp->next)

{

temp = temp->next;

by

temp->next = newNode;

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

Example:

Let us consider a simple hash function as “key mod 7” and sequence of

keys as 50, 700, 76, 85, 92, 73, 101.

0 0 o] 700 o] 700
1 1| so 1| 50 1] 50 = &5
2 2 2 2

3 3 3 3
4 4 4 4

5 5 5 5

6 6 6 76 6 76

Initial Empty Table Insert 50 Insert 700 and 76 Insert 85: Collision
Occurs, add to chain

0 700 0 700

1l 50 =N 85 92 1| 50 =y 85 92
2 2

3 A IR .
4 q

5 5

6 76 6 76

Inser 92 Collision Insert 73 and 101

Occurs, add to chain

5.13 Open Addressing
e Open addressing is a closed hashing technique.
e All elements are stored directly into the hash table

e In this method, if collision occurs, alternative cells are tried until an
empty cell is found.

e There are three common methods
1. Linear probing
2. Quadratic probing
3. Double hashing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS402- DATA STRUCTURES USING C++

LINEAR PROBING:

In linear probing, we linearly probe for next slot.

Let S be the table size

If slot hash(x) % S is full, then we try (hash(x) + 1) % S

If (hash(x) + 1) % S is also full, then we try (hash(x) + 2) % S

If (hash(x) + 2) % S is also full, then we try (hash(x) +
3) % S Algorithm for linear probing:

1. Apply hash function on the key value and get the address of the

location.

2. If the location is free, then
1) Store the key value at this location, else

I1) Check the remaining locations of the table one after the other
till an empty location is reached. Wrap around on the table can
be used. When we reach the end of the table, start looking again
from the beginning.

Iii) Store the key in this empty location.
3.End

Example

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

Let us consider a simple hash function as “key mod 7” and sequence of

keys as 50, 700, 76, 85, 92, 73, 101.

0 0 ol 700 ol 700
1 1 50 1 50 1 50
2 2 2 2 85
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 76 6 76
Initial Empty Table insert 50 Insert 700 and 76 Insert 85: Collision
Occurs, insert 85 at
next free slot.
ol 700 ol 700
TR = Insert 73 and
1) 30 linsert 92, collision 1] 0 | 10519 .
2 85 occurs as 50 is 2 B85
3 g7 there at index 1. 3 92
4 Insert at next free 4 73
slot
5 5 101
6 76 6 76
Program

void insert(intkey,int data)

{

struct Dataltem *item = (structDataltem¥*)

malloc(sizeof(structDataltem)); item->data = data;
item->key = key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty or deleted cell

while(hashArray[hashIndex] != NULL &&hashArray[hashIndex]->key != -1)

{
|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

24CS402- DATA STRUCTURES USING C++

//g0 to next cell
++hashlndex;
//wrap around the table hashIndex %= SIZE;

by

hashArray[hashIndex] = item;

by

QUADRATIC PROBING

e Quadratic probing is similar to linear probing and the only difference

is the interval between successive probes or entry slots.

e Here, when the slot at a hashed index for an entry record is
already occupied, you must start traversing until you find an
unoccupied slot.

e The interval between slots is computed by adding the successive value

of an arbitrary polynomial in the original hashed index.

Let us assume that the hashed index for an entry is index and at index there is

an occupied slot. The probe sequence will be as follows:

index = index % hashTableSize

index = (index + 1) % hashTableSize
index = (index + 4) % hashTableSize
index = (index + 9) % hashTableSize

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

24CS402- DATA STRUCTURES USING C++

Quadratic Probing Example

msert(76) msert(40) msert(48) msert(5) msert(55)

T6%7T=6 40%7 =15 48%7 =6 5067 =5 55%7 =6
0 . 0 48 % 47 0 47
1 1 i} 1 1
2 2 2
& 2 5 5
3 3 3 3 3 55
4 4 4 4 4
? 31 40 *l 40 31 40 3 40
8o Slag 5 76 6| 75 %95
probes: 1 1 2 3 3

Double Hashing

e Double hashing is a collision resolving technique in Open Addressed
Hash tables. Double hashing uses the idea of applying a second hash
function to key when a collision occurs.

Double hashing can be done using :

(hash1l(key) + i * hash2(key)) % TABLE_SIZE

Here hashl1() and hash2() are hash functions and TABLE_SIZE is size of

hash table. (We repeat by increasing i when collision occurs)

5.14 Rehashing

e If the table is close to full, the search time grows and may become
equal to the table size.

e When the load factor exceeds a certain value (e.g. greater than
0.5) we do rehashing :

e Build a second table twice as large as the original and rehash there

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

24CS402- DATA STRUCTURES USING C++

all the keys of the original table.

e Rehashing is expensive operation, with running time O(N)

e However, once done, the new hash table will have good performance.

Hash Table with linear probing with input 13, 15, 6, 24

0 6 1]
1 15 !
hixy=xmod7 2 h{x) = x mod 17 ;
A=0.57 3 24 h=0.29 "
4 ;
3 G
|Rehashing >+ 3
e
0 6
I 15 :‘:
Insert 23 : 2 12
A=071 3 i 13 R
Bl T —
5 15 15
13 13 16

5.15Extendible Hashing

e Used when the amount of data is too large to fit in main memory and

external storage is used.

e N records in total to store, M records in one disk block

e The problem: in ordinary hashing several disk blocks may be examined
to find an element - a time consuming process.

Extendible hashing: no more than two blocks are examined. Idea:

e Keys are grouped according to the first m bits in their code. Each group

is stored in one disk block.

e If the block becomes full and no more records can be inserted, each
group is split into two, and m+1 bits are considered to determine the

location of a record.

Extendible Hashing Example

|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

24CS402- DATA STRUCTURES USING C++

* Suppose that g=2 and bucket size = 4.

* Suppose that we have records with these keys and hash function h(key)

= key mod 64:

key h(key) = key mod 64 bit pattern
288 32 100000
8 8 001000
1064 40 101000
120 56 111000
148 20 010100
204 12 001100
641 l 000001
700 60 111100
258 2 000010
1586 50 110010
44 44 101010

« [=

00 01 10 11

1=2 1= 2 = 2 |= 2

8 148 288 120
204 1064 700
641 44 1586
258

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

