# UNIT II - WATER RESOURCES AND ENVIRONMENT MICROBIOLOGY 2.6 CLASSIFICATION OF MICROORGANISMS

#### 1. What are Microorganisms?

- Microorganisms are tiny living organisms visible only under a microscope.
- Include bacteria, viruses, fungi, protozoa, and algae.

#### 2. Classification of Microorganisms

Microorganisms are classified into five major groups:

#### 1. Bacteria

- Characteristics:
  - Single-celled organisms (prokaryotes).
  - No nucleus; DNA floats in the cytoplasm.
  - Reproduce rapidly by binary fission.
- Examples:
  - E. coli, Streptococcus.
- Types (Based on Shape):
  - Cocci (spherical), Bacilli (rod-shaped), Spirilla (spiral), Vibrios (commashaped).

#### 2. Viruses

- Characteristics:
  - Non-living outside a host; require a host cell to reproduce.
  - Made of genetic material (DNA or RNA) enclosed in a protein coat.
- Examples:
  - Influenza virus, HIV, Coronavirus.
- Size:
  - Smaller than bacteria.

#### 3. Fungi

- Characteristics:
  - Eukaryotic organisms (have a nucleus).
  - Can be unicellular (yeast) or multicellular (molds, mushrooms).
  - Decompose organic matter.
- Examples:
  - Yeast (Saccharomyces cerevisiae), Mold (Aspergillus).

#### 4. Protozoa

• Characteristics:

- Single-celled eukaryotic organisms.
- Move using cilia, flagella, or pseudopodia.
- Often parasitic.
- Examples:
  - Amoeba, Plasmodium (causes malaria).

# 5. Algae

- Characteristics:
  - Photosynthetic organisms (produce their own food).
  - Can be unicellular (e.g., *Chlamydomonas*) or multicellular (e.g., seaweed).
  - Found in water or moist environments.
- Examples:
  - Spirogyra, Chlorella.

# 3. Importance of Microorganisms

- Beneficial Roles:
  - Decompose organic waste.
  - Produce antibiotics (e.g., Penicillium).
  - Aid in food production (e.g., yogurt, bread).
  - Fix nitrogen in soil (*Rhizobium*).
- Harmful Roles:
  - Cause diseases (e.g., tuberculosis, malaria).
  - Spoil food and materials.

# 2.6.1 ROLE OF MICROORGANISM IN WASTE WATER TREATMENT

# 1. What is Wastewater Treatment?

• Wastewater treatment is the process of cleaning sewage or industrial waste to make it safe for reuse or discharge into the environment.

OBSERVE OPTIMIZE OUTSPREAD

• Microorganisms play a key role in breaking down pollutants.

# 2. Microorganisms in Wastewater Treatment

Microorganisms help remove organic and inorganic waste by digesting it. They are used in three main stages of treatment:

# 1. Primary Treatment (Minimal Role of Microorganisms)

- Focus: Removal of large solids and floating debris.
- Microorganisms are not significantly involved at this stage.

# 2. Secondary Treatment (Key Role of Microorganisms)

• Purpose: Breakdown of organic matter using microorganisms.

- Key Processes:
  - Activated Sludge Process:
    - Wastewater is aerated to allow bacteria to grow and digest organic pollutants.
    - Common microbes: *Nitrosomonas*, *Nitrobacter*.
  - Trickling Filters:
    - Wastewater flows over a bed of stones or plastic with biofilm (microorganisms).
    - Microorganisms digest waste.
  - Anaerobic Digesters:
    - In oxygen-free conditions, anaerobic bacteria break down organic material to produce biogas (methane).
    - Example microbes: *Methanobacterium*, *Clostridium*.

# 3. Tertiary Treatment (Specific Role of Microorganisms)

- Purpose: Further purification to remove pathogens and nutrients.
- Key Processes:
  - Use of specific microbes to remove nitrates, phosphates, and harmful chemicals.
  - Example microbes: Denitrifying bacteria like *Pseudomonas*.

# 3. Types of Microorganisms Used

- 1. Bacteria:
  - Decompose organic pollutants into simpler compounds.
  - Examples: *Bacillus*, *Pseudomonas*.
- 2. Fungi:
  - Break down complex organic materials like lignin and cellulose.
  - Examples: *Trichoderma*, *Aspergillus*.
- 3. Protozoa:
  - Consume bacteria and organic debris, helping to clarify water.
  - Examples: Paramecium, Amoeba.
- 4. Algae:
  - Produce oxygen during photosynthesis, supporting bacterial growth.
  - Examples: Chlorella, Spirogyra.

# 4. Benefits of Microorganisms in Wastewater Treatment

- Cost-effective and natural method.
- Produces biogas as a renewable energy source.
- Reduces harmful pathogens and pollutants.
- Converts waste into usable by-products like fertilizers.

#### 5. Challenges

- Sensitive to environmental changes (e.g., pH, temperature).
- Toxic chemicals in wastewater can harm microbial communities.
- Requires proper management to maintain microbial balance.

#### 2.6.2 BACTERIAL NUTRITION AND GROWTH

#### 1. Bacterial Nutrition

Bacteria require nutrients for energy, growth, and reproduction. Nutrients are obtained from their environment and can be classified based on how they obtain energy and carbon.

### **1.** Types of Bacterial Nutrition:

# 1. Autotrophic Bacteria:

- Make their own food using inorganic substances.
- Photoautotrophs: Use sunlight for energy (e.g., *Cyanobacteria*).
- Chemoautotrophs: Use chemical reactions for energy (e.g., *Nitrosomonas*).

### 2. Heterotrophic Bacteria:

- Depend on organic substances for food.
- Saprophytic: Feed on dead organic matter (e.g., Bacillus).
- Parasitic: Feed on a living host, often causing harm (e.g., *Salmonella*).
- Symbiotic: Live in mutual benefit with other organisms (e.g., *Rhizobium* in plants).

# 3. Mixotrophic Bacteria:

• Combine autotrophic and heterotrophic modes (e.g., *Beggiatoa*).

#### 2. Nutrient Requirements:

- Macronutrients: Needed in large amounts (e.g., carbon, hydrogen, oxygen, nitrogen, phosphorus).
- Micronutrients: Needed in small amounts (e.g., iron, zinc, copper).

# 2. Bacterial Growth

1. Growth Process:

- Bacterial growth refers to the increase in the number of cells, not the size of individual cells.
- Bacteria reproduce asexually by binary fission (one cell divides into two).

# 2. Phases of Bacterial Growth (in a culture):

1. Lag Phase:

- Bacteria prepare for growth by synthesizing enzymes and absorbing nutrients.
- No significant increase in number.

# 2. Log (Exponential) Phase:

- Rapid cell division.
- Population doubles at a constant rate.

# 3. Stationary Phase:

- Growth slows as resources are depleted.
- Number of new cells equals the number of dying cells.

# 4. Death (Decline) Phase:

• Cells die due to lack of nutrients and accumulation of waste products.

# **3.** Factors Affecting Bacterial Growth:

- Temperature:
  - Optimal ranges:
    - *Psychrophiles*: Cold-loving (0–20°C).
    - *Mesophiles*: Moderate temperatures (20–45°C).
    - *Thermophiles*: Heat-loving (45–80°C).
- pH: Most bacteria prefer neutral pH (6.5-7.5).
- Oxygen:
  - Aerobes: Require oxygen.
  - Anaerobes: Grow without oxygen.
  - Facultative Anaerobes: Can survive with or without oxygen.
- Nutrients: Availability of essential nutrients.
- Water: Necessary for metabolic processes.

# 3. Importance of Bacterial Nutrition and Growth

- Used in biotechnology for producing medicines, enzymes, and fermented foods.
- Helps in waste decomposition and nutrient cycling.
- Pathogenic bacteria can cause diseases, so understanding their growth helps in control.