NORMALIZATION

Normalization is the process of organizing data in a database to:

Reduce redundancy

Avoid update, insert, and delete anomalies

Maintain consistency

Improve efficiency

1. FIRST NORMAL FORM (1NF)

Definition

A relation is in **1NF** if:

All attributes contain **atomic** (**indivisible**) values.

No multivalued or repeating attributes.

Each record is unique.

Example (NOT in 1NF)

Employee Table

EmpID EmpName Skills PhoneNumbers

101 Ravi Java, Python 98765, 87654

102 Priya SQL 76543

Problems:

Skills contains multiple values \rightarrow multivalued

PhoneNumbers contains multiple values

Violates 1NF

Convert to 1NF

Split multi-valued attributes into separate rows.

Employee Table (1NF)

EmpID EmpName Skill PhoneNumber

101 Ravi Java 98765

101 Ravi Python 87654

102 Priya SQL 76543

Now all values are atomic \rightarrow **1NF achieved**

2. SECOND NORMAL FORM (2NF)

Definition

A table is in **2NF** if:

It is in 1NF

No partial dependency exists

A non-key attribute should NOT depend on part of a composite key.

(F) Applies only if a table has a **composite primary key**.

Example of Partial Dependency

OrderDetails(OrderID, ProductID → Composite Key)

OrderID ProductID ProductName Price Qty

Functional Dependencies:

 $\{OrderID, ProductID\} \rightarrow Qty$

ProductID → ProductName, Price (partial dependency)

Fixing 2NF Violation

Split into two tables:

1. Product Table

ProductID ProductName Price

2. OrderDetails

OrderID ProductID Qty

Now:

No partial dependency

Achieved 2NF

3. THIRD NORMAL FORM (3NF)

Definition

A relation is in **3NF** if:

It is in 2NF

No **transitive dependency** exists:

 $X \rightarrow Y$ and $Y \rightarrow Z$ means $X \rightarrow Z$ is transitive

Example of Transitive Dependency

Student Table

RollNo Name DeptID DeptName

Functional Dependencies:

 $RollNo \rightarrow DeptID$

DeptID → DeptName

So: RollNo → DeptName (transitive)

Convert to 3NF

Split the table:

1. Student

| RollNo | Name | DeptID |

2. Department

| DeptID | DeptName |

Now:

No transitive dependency

Achieved 3NF

4. BOYCE-CODD NORMAL FORM (BCNF)

Definition

A relation is in **BCNF** if:

For every functional dependency $X \rightarrow Y$,

X must be a superkey.

More strict than 3NF.

BCNF Example

Lecture Hall Allocation Table:

Course Instructor Room

Assume:

Instructor → Room

Room → Instructor

(Course, Instructor) \rightarrow Room

Problem:

Instructor is NOT a key

Room is NOT a key

Both determine other values → violates BCNF

Convert to BCNF

Split:

1. Instructor-Room

| Instructor | Room |

2. Course-Instructor

| Course | Instructor |

Now FDs:

Instructor \rightarrow Room (Instructor is key)

Course → Instructor (Course is key)

BCNF achieved.

5. FOURTH NORMAL FORM (4NF)

Definition

A table is in 4NF if:

It is in BCNF

It has no non-trivial multivalued dependencies (MVDs)

Example of MVD

A professor may teach multiple subjects

A professor may have multiple offices

Prof Subject Office

A DBMS Block-1

A DBMS Block-2

A Networks Block-1

A Networks Block-2

Here:

 $\operatorname{Prof} \longrightarrow \operatorname{Subject}$

 $Prof \rightarrow \rightarrow Office$

Two independent multi-valued attributes → violates 4NF

Convert to 4NF

1. Prof-Subject

| Prof | Subject |

2. Prof-Office

| Prof | Office |

Now:

No multi-valued dependency in a single table

Achieved 4NF

6. FIFTH NORMAL FORM (5NF)

Definition

A relation is in **5NF** if:

It is in 4NF

It cannot be decomposed further without losing information

Deals with **join dependencies**

Used when:

Data comes from three or more independent entities

Example

Supplier-Product-Region table:

Supplier Product Region

Assume:

A supplier can supply multiple products

A product can be supplied in multiple regions

Supplier works in multiple regions

These combine to create many rows.

To achieve 5NF, split into:

- 1. Supplier-Product
- 2. Product-Region
- 3. Supplier-Region

Now joins reconstruct the original table without anomalies.

CASE STUDY 1: Normalizing a RETAIL INVENTORY DATABASE UNNORMALIZED RetailInventory Table

ItemID ItemName Supplier SupplierPhone StoreLocations PurchasePrices

101 Pen ABC Co 98765 Chennai, Pune 10, 9.5

Problems

StoreLocations is multi-valued

PurchasePrices is multi-valued

Supplier details repeated → redundancy

Step 1: Convert to 1NF

Break multi-valued attributes:

ItemID ItemName Supplier SupplierPhone StoreLocation PurchasePrice

101	Pen	ABC Co 98765	Chennai	10
101	Pen	ABC Co 98765	Pune	9.5

Step 2: Remove Partial Dependencies (2NF)

Assume Key = {ItemID, StoreLocation}

But Supplier depends only on ItemID \rightarrow partial dependency.

Split:

Item

| ItemID | ItemName | Supplier |

ItemLocation

| ItemID | StoreLocation | PurchasePrice |

Supplier

| Supplier | SupplierPhone |

Step 3: Remove Transitive Dependencies (3NF)

Supplier → SupplierPhone is fine No transitive dependencies remain.

Final BCNF / 4NF / 5NF

No multivalued dependencies.

Final database:

- ✓ Item(ItemID, ItemName, SupplierID)
- **✓** Supplier(SupplierID, SupplierName, SupplierPhone)
- **✓** ItemLocation(ItemID, StoreLocation, PurchasePrice)

CASE STUDY 2: Normalizing a LIBRARY DATABASE

UNNORMALIZED Library Table

BookID Title Authors Member BorrowDate

B101 DBMS Navathe, Korth Suresh 2023-01-01

Problems

Authors is multi-valued

Book borrowed by a member repeatedly → redundancy

1NF

Split authors:

BookID Title Author Member BorrowDate

2NF & 3NF

Dependencies:

BookID \rightarrow Title

BookID \rightarrow Author (M:N relationship \rightarrow separate table)

Member → BorrowDate depends on (BookID, Member)

Final 3NF Schema

- **✓** Book(BookID, Title)
- **✓** Author(AuthorID, AuthorName)
- **✓** BookAuthor(BookID, AuthorID)
- **✓** Member(MemberID, MemberName)
- **✓** Borrow(BookID, MemberID, BorrowDate)

FINAL SUMMARY TABLE OF NORMAL FORMS

Normal Form	Removes	Violation Example
1NF	Multivalued attributes, repeating groups	Skills = {Java, Python}
2NF	Partial dependency	ProductID → ProductName
3NF	Transitive dependency	$DeptID \rightarrow DeptName$
BCNF	Determinant not a key	$Instructor \rightarrow Room$
4NF	Multivalued dependency	$\operatorname{Prof} \longrightarrow \operatorname{Subject}$, Office
5NF	Join dependency	Supplier-Product-Region