2.6 Graph Laplacians

Labeled graph Degree matrix

1 0 0 0 0 0

o o 0 3 0 0 0 0

0 0 2 0 00

‘ 00 0 3 00

o o 00 0 0 3 0

0O 0 0 0 0 2

Adjacency matrix Laplacian matrix
01 0 0 0 O 1 -1 0 0 0 0
I 0 % 010 -1 3 -1 0 -1 0
01 0 1 0 0O 0 -1 2 -1 0 0
00 1 0 1 1 0 0 -1 3 -1 -1
01 0 1 0 1 0 -1 0 -1 3 -1
00 0 1 1 0 0 0 0 1 -1 2

Graph Laplacians are core mathematical tools used in graph theory, data science, machine
learning, image processing, and network analysis. They help us understand connectivity, flow,
clustering, and smoothness on graphs.

1. What is a Graph Laplacian?
A Graph Laplacian is a matrix representation of a graph that captures:
e How nodes are connected
o How information diffuses across the graph
o How clusters (communities) are formed
& 1t is derived from:
e Adjacency Matrix (A)
o Degree Matrix (D)
2. Basic Components
(a) Adjacency Matrix (A)
o A;j = lif node i is connected to node ;
o A;j = Ootherwise
Example:
A=[011
100
100]



(b) Degree Matrix (D)
o Diagonal matrix

e D;;=number of edges connected to node i

Example:
D=[200
010
001]
Types
1. Unnormalized Laplacian:
L=D-A
2. Normalized Laplacian:
o Lgym =1—D71/2AD™1/2
o Loy=1—D71A
Unnormalized Graph Laplacian
Definition:
L=D-A
Example:
L=[2-1-1
-110
-1 0 1]
Key Properties:
v Symmetric

v Positive semi-definite
v Small eigenvalues — strong connectivity

v Zero eigenvalue — number of connected components

Interpretation:
Measures how much a node differs from its neighbors.



Normalized Graph Laplacians
Normalization helps when node degrees vary widely.
(a) Symmetric Normalized Laplacian

Lsym =1—D71/2AD™1/2

v Used in spectral clustering

v Eigenvalues lie between 0 and 2
(b) Random Walk Laplacian

Lo, =1—-D"14A

Vv Related to Markov chains & random walks
v Used in PageRank and diffusion models

Intuition Behind Laplacian
Think of the graph as a rubber sheet:

o Connected nodes try to stay close

e Laplacian measures tension

e Minimizing Laplacian energy — smooth labels or clusters
Mathematically:

xTLx = Z (x; — x;)?

(L.))EE

s® If neighbors have similar values — small energy

6. Eigenvalues & Eigenvectors (Very Important)

Eigenvalue | Meaning

0 Graph is connected

Multiple Os | Multiple components




Small values | Strong clusters

Eigenvectors | Reveal community structure

— Used in Spectral Clustering

7. Applications of Graph Laplacians
© Data Science & ML
e Spectral clustering
e Semi-supervised learning
o Dimensionality reduction (Laplacian Eigenmaps)
© Network Analysis
o Community detection
o Centrality measures
e Graph partitioning
¢ Image Processing
o Image segmentation
o Edge detection
¢ Physics & Engineering
e Heat diffusion

e FElectrical networks



PageRank Algorithm
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PageRank is an algorithm used to rank web pages (nodes) based on their importance in a directed
graph.

Core Idea

A page is important if many important pages link to it.

1-d PR(j
PR(i) = T+d Z Out((]]'))

JEM()

Formula

Where:
e PR(i)— PageRank of page i
e d— damping factor (usually 0.85)

e N—> total number of pages



e In(i)— pages linking to i

e Out(j)— outgoing links from page j
Random Surfer Model

o User follows links with probability d

e Jumps to a random page with probability 1 —d
Steps

1. Initialize all pages with equal rank

2. Update ranks using the formula

3. Repeat until values converge
Properties

e Works on directed graphs

e Handles dead ends using damping factor

o Converges to a stable ranking
Applications

e Web search engines

e Social network influence

o (Citation networks



