UNIT IV — Real-Time Data Engineering Tools

Stream Processing Concepts
What is Stream Processing?

Stream processing is a technique of data processing and management which uses a continuous
data stream and analyzes, transforms, filter, or enhance it in real-time. Once processed, the data
is sent to an application, data storage, or another stream processing engine. Stream processing
engines enable timely decision-making and provide insights as data flows in, making them
crucial for modern, data-driven applications. It is also known by several names, including real-
time analytics, streaming analytics, Complex Event Processing, real-time streaming analytics,
and event processing. Although various terminologies have previously differed, tools
(frameworks) have converged under the term stream processing
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How Does Stream Processing Work?

Data Collection: Data is continuously collected from various sources like sensors, social media,
or financial transactions.

Data Ingestion: The incoming data is ingested into the stream processing engine without waiting
to accumulate large batches.



Real-Time Processing: Each piece of data is immediately analyzed and processed as it arrives.

Data Transformation: The engine may transform the data, such as filtering, aggregating, or
enriching it with additional information.

Immediate Insights: The processed data provides real-time insights and results.

Instant Actions: Based on the insights, the system can trigger instant actions or responses,
ensuring timely decision-making.

Output: The results are outputted to various destinations, such as dashboards, databases, or alert
systems, for further use or analysis.

Stream Processing Architecture

There are several types of stream processing architectures, each designed to handle real-time data
in different ways. Here are the main types:

Event Stream Processing (ESP):

Definition: Event Stream Processing focuses on real-time processing and analysis of continuous
streams of events or data records. It involves capturing, processing, and reacting to events as they
occur, typically in milliseconds or seconds.

Use Case: ESP is used for applications requiring immediate responses to events, such as real-
time monitoring, fraud detection, and IoT data processing.

Message-Oriented Middleware (MOM):

Definition: Message-Oriented Middleware facilitates communication between distributed
systems by managing the exchange of messages. It ensures reliable delivery, messaging patterns
(like publish-subscribe), and integration across heterogeneous systems.

Use Case: MOM is essential for asynchronous communication and integration in applications
like enterprise messaging, microservices architectures, and systems requiring decoupling of
components.

Complex Event Processing (CEP)

Definition: Complex Event Processing involves analyzing and correlating multiple streams of
data to identify meaningful patterns or events. It focuses on detecting complex patterns within
streams in real-time or near real-time.



Use Case: CEP is used for applications requiring high-level event pattern detection, such as
algorithmic trading, operational intelligence, and dynamic pricing in retail.

Data Stream Processing (DSP)

Definition: Data Stream Processing involves processing and analyzing continuous data streams
to derive insights and make decisions in real-time. It includes operations like filtering,
aggregation, transformation, and enrichment of streaming data.

Use Case: DSP is used in various applications, including real-time analytics, sensor data
processing, financial market analysis, and monitoring systems.

Lambda Architecture for stream processing :

Definition: Lambda Architecture is a hybrid approach combining batch and stream processing
techniques to handle large-scale, fast-moving data. It uses both real-time stream processing and
batch processing to provide accurate and timely insights.

Use Case: Lambda Architecture is applied in systems requiring both real-time analytics and
historical
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Kappa Architecture for stream processing:

Definition: Kappa Architecture is an evolution of Lambda Architecture that simplifies the data
pipeline by using only stream processing for both real-time and batch data processing. It
emphasizes using stream processing platforms as the core for data processing.

Use Case: Kappa Architecture is suitable for scenarios where simplicity, scalability, and unified
processing of real-time and historical data are critical, such as real-time analytics, [oT data
processing, and log analysis.
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Each of these architectures is designed to address specific needs and challenges in stream
processing, allowing organizations to choose the best approach for their particular use cases and
requirements.

When to Use Steam Processing?

Stream processing should be used when you need to analyze and respond to data in real-time.
Stream processing is perfect for obtaining real-time analytics results. Streaming data processing
systems in big data are effective solutions for scenarios that require minimal latency. Here are
some specific scenarios:

Real-Time Analytics: When you need immediate insights, such as monitoring live social media
feeds or website user activity.



Fraud Detection: To instantly detect and respond to suspicious activities in financial transactions
or online services.

[oT Data Management: For processing continuous data from sensors and devices in real-time,
such as in smart homes or industrial automation.

Live Monitoring: When tracking and reacting to events as they happen, like network security
threats or system performance issues.

Dynamic Pricing: In scenarios like e-commerce or ride-sharing, where prices need to adjust
based on real-time demand and supply.

Real-Time Recommendations: To provide users with immediate suggestions, such as in online
shopping or streaming services.

Stream processing is particularly effective for algorithmic trading and stock market surveillance,
computer system and network monitoring and wildlife tracking, geographic data processing,
predictive maintenance, manufacturing line monitoring, and smart device applications.

What are the Stream Processing frameworks?

Stream processing frameworks are tools and libraries that help developers build applications that
process data in real-time. Some popular stream processing frameworks include:

Apache Kafka: A distributed stream processing platform that is used for building real-time data
pipelines and streaming applications. It can handle large volumes of data with high throughput.

Apache Flink: A powerful stream processing framework that provides low-latency, high-
throughput data processing. It supports both batch and stream processing.

Apache Storm: A real-time computation system designed for processing unbounded streams of
data. It is known for its scalability and fault-tolerance.

Apache Samza: Developed by LinkedIn, Samza is a stream processing framework that works
with Apache Kafka to provide distributed stream processing.

Google Cloud Dataflow: A fully managed service for stream and batch processing, based on
Apache Beam. It allows developers to write processing pipelines and execute them on Google
Cloud.

Amazon Kinesis: A cloud-based service for real-time processing of streaming data. It enables the
development of applications that process and analyze streaming data.

Microsoft Azure Stream Analytics: Microsoft Azure Stream Analytics is a real-time analytics
service that can process millions of events per second, providing insights from data streams in
real-time.



IBM Streams: A platform for processing large volumes of streaming data with low latency. It
supports complex analytics and real-time processing.

Apache Storm provides real-time computation features such as online machine learning,
reinforcement learning, and continuous computation. Delta Lake has a single architecture to
handle both stream and batch processing.

Apache Kafka: Producers, Consumers, Topics
Introduction to Apache Kafka

Apache Kafka is a distributed, high-throughput messaging system used for real-time data
streaming. It is widely used for building data pipelines, stream processing applications, and
event-driven architectures.

Why is Apache Kafka Needed?

With businesses collecting massive volumes of data in real time, there is a need for tools that can
handle this data efficiently. Kafka solves several key problems:

Real-Time Processing: Kafka is optimized for handling real-time data streams, allowing
businesses to process and act on data as it happens.

Fault-Tolerant: Kafka ensures that even if parts of the system fail, data won’t be lost, making it
a highly reliable messaging system.

Scalable: Kafka scales horizontally by adding more brokers, allowing it to handle growing data
loads and increasing numbers of producers and consumers.

Event-Driven Architecture: Kafka powers event-driven architectures, enabling systems to
respond to events in real-time without having to constantly poll for changes

Core Components of Apache Kafka

To understand how Kafka works, it's essential to know about its core components. Let’s take a
closer look at each of these:

1. Kafka Broker

A Kafka broker is a server that runs Katka and stores data. Typically, a Kafka cluster consists of
multiple brokers that work together to provide scalability, fault tolerance, and high availability.
Each broker is responsible for storing and serving data related to topics.



2. Producers

A producer is an application or service that sends messages to a Kafka topic. These processes
push data into the Kafka system. Producers decide which topic the message should go to, and
Kafka efficiently handles it based on the partitioning strategy.

Example:

An e-commerce website sending order events to Kafka.

Key Responsibilities:

Serialize messages before sending.

Select partitions for messages.

Handle message delivery (synchronous/asynchronous).
Python example:

from kafka import KatkaProducer

producer = KafkaProducer(bootstrap servers='localhost:9092')
producer.send('orders', b'{"order id":101, "amount":500}")

producer.flush()

Producer

Producer Producer

Kafka Cluster

e s
/ \

Producer Producer

Producer



3. Kafka Topic

A topic in Kafka is a category or feed name to which messages are published. Kafka messages
are always associated with topics, and when you want to send a message, you send it to a specific
topic. Topics are divided into partitions, which allow Kafka to scale horizontally and handle large
volumes of data.

Partitioning:

Each partition is an ordered, immutable sequence of messages.
Each message has a unique offset.

Partitions allow parallel processing by consumers.
Replication:

Each partition can have multiple replicas across brokers for fault tolerance.
Example:

Topic: user logs

Partitions: PO, P1, P2

Key Points:

Maintains message order within a partition.

Supports high throughput and fault tolerance.

Consumers can read from different partitions independently.

4. Consumers and Consumer Groups

A Consumer is an application that reads messages from Kafka topics. Katka allows consumer
groups, where multiple consumers can read from the same topic, but Kafka ensures that each
message is processed by only one consumer in the group. This helps with load balancing and
allows consumers to read messages starting from any offset.

Partitions allow you to parallelize a topic by splitting the data in a particular topic across multiple
brokers.
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5. Zookeeper

Kafka uses Apache ZooKeeper to manage metadata, control access to Kafka resources, and
handle leader election and broker coordination. ZooKeeper ensures high availability by making
sure the Kafka cluster remains functional even if a broker fails.

Important Concepts of Apache Kafka

Topic partition: Kafka topics are divided into a number of partitions, which allows you to split
data across multiple brokers.

Consumer Group: A consumer group includes the set of consumer processes that are
subscribing to a specific topic.

Node: A node is a single computer in the Apache Kafka cluster.

Replicas: A replica of a partition is a "backup" of a partition. Replicas never read or write data.
They are used to prevent data loss.

Producer: Application that sends the messages.

Consumer: Application that receives the messages.

How Apache Kafka Works

Apache Kaftka moves data from one place to another in a smooth and reliable way. Here’s how it
works in simple terms:



Step 1: Producers Send Data
Producers are applications that create data and send it to Kafka.
This data can be anything—logs, transactions, user activities, or events.

Kafka splits the data into smaller parts called partitions, making it easier to handle large amounts
of information.

Step 2: Kafka Stores the Data
Kafka organizes the data into topics, where it is saved for a certain period.
Even if a consumer reads the data, Kafka doesn’t delete it immediately.

To prevent data loss, Kafka makes copies of the data and stores them on different servers.

Step 3: Consumers Read the Data
Consumers are applications that subscribe to topics and read messages.

To manage the load, consumers are divided into consumer groups, so no message is processed
twice.

Consumers can choose where to start reading, whether from the newest message or an earlier
point.

Step 4: Kafka Balances the Load
ZooKeeper helps Kafka manage which server is in charge of storing and distributing data.

If a server goes down, Kafka automatically redirects the data to another server.

Step 5: Data is Processed and Used

Once consumers receive the data, they can store it in a database, analyze it, or trigger other
events.

Kafka can work with tools like Apache Spark, Flink, and Hadoop for deeper analysis.



Benefits of Apache Kafka
The following are some of the benefits of using Apache Kafka:
1. Handles Large Data Easily

Kafka is designed to handle large volumes of data, making it ideal for businesses with massive
data streams.

2. Reliable & Fault-Tolerant

Even if some servers fail, Katka keeps data safe by making copies.
3. Real-Time Data Processing

Perfect for applications that need instant data updates.

4. Easy System Integration

Producers and consumers work independently, making it flexible.
5. Works with Any Data Type

Can handle structured, semi-structured, and unstructured data.

6. Strong Community Support

With many companies using Kafka, there is a large and active community supporting it, along
with integrations with tools like Apache Spark and Flink.

Limitations of Apache Kafka

The following are some of the limitations you have to face while using Apache Kafka:
1. Difficult to Set Up

Requires technical knowledge to install and manage.

2. Storage Can Be Expensive

Since it saves messages for some time, costs may rise.

3. Message Order Issues

Guarantees order only within a single partition, not across multiple ones.

4. No Built-in Processing

Needs extra tools for transforming or analyzing data.

5. Needs High Resources



Uses a lot of CPU, memory and network bandwidth.
6. Not Ideal for Small Messages

Better for large data streams; smaller tasks may have unnecessary overhead.

Kafka Integration with Spark and Flink
1. Why Integrate Kafka with Spark and Flink?
Kafka acts as a high-throughput, distributed messaging system, serving as a data source and sink.

Spark and Flink are stream-processing frameworks that consume Kafka streams for real-time
analytics, ETL, and event-driven applications.

Integration allows:
Real-time data processing
Fault-tolerant pipelines
Scalable analytics for big data

Complex transformations and aggregations

2. Kafka + Spark Integration

Key Features:

Spark provides Structured Streaming and Spark Streaming for real-time data.
Spark works in micro-batches, processing small intervals of data.

Fault tolerance using checkpointing.

Can read/write from Kafka topics.

Integration Steps
1.Add Kafka dependencies to Spark project.

2.Read data from Kafka topic:



Code
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("KafkaSparkIntegration").getOrCreate()
df = spark.readStream.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "orders") \
Joad()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)").show()

3.Process the data (filter, map, aggregate, windowing).
4.Write processed data back to Kafka or other sinks:
Code
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \
.writeStream \
format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("topic", "processed orders") \

.start()

Advantages
Unified batch + streaming processing.
Handles large-scale streaming analytics.

Supports windowed operations, joins, and aggregations.

Example Use Cases
Real-time dashboards for user activity

Fraud detection in financial transactions



ETL pipelines for AI/DS workflows

3. Kafka + Flink Integration

Key Features

Flink provides true streaming (event-by-event) processing, unlike Spark’s micro-batching.
Supports stateful computations, exactly-once semantics, and time-based operations.

Ideal for low-latency real-time applications.

Integration Steps

1.Add Kafka connector dependencies.

2. Consume data from Kafka topic:

Java code

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties props = new Properties();

props.setProperty("bootstrap.servers", "localhost:9092");

props.setProperty("group.id", "flink-group");

FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("orders", new
SimpleStringSchema(), props);

DataStream<String> stream = env.addSource(consumer);

3.Process the stream (map, filter, aggregate, window).

4.Produce processed data back to Kafka:

Java code

FlinkKafkaProducer<String> Java ucer = new FlinkKafkaProducer<>(
"localhost:9092",
"processed orders",

new SimpleStringSchemay()



)

stream.addSink(producer);

Advantages

Low-latency, near real-time processing.

Handles stateful streaming with windows, sessions, and aggregations.
Exactly-once delivery for critical data pipelines.

Advanced event-time processing (handles out-of-order data).

Example Use Cases

IoT sensor data monitoring
Real-time fraud detection
Stock market event processing

Dynamic recommendation systems

4. Kafka + Spark vs Kafka + Flink Comparison

Feature Kafka + Spark Kafka + Flink

Processing Type Micro-batch True stream (event-by-
event)

Latency Higher (~seconds) Low (~milliseconds)

Fault Tolerance Yes (checkpointing) Yes (exactly-once)

Windowing Yes Advanced (event-time)

Stateful Processing Limited Advanced

Best Use Case ETL, Analytics Real-time streaming, [oT

5. Simplified Architecture Diagram

[Producers] ---> [Kafka Topics/Partitions] ---> [ Spark Streaming/Flink Streaming] ---> [Data
Sinks (DB/HDFS/Dashboards)]

Producers push data to Katka topics.

Kafka brokers manage partitions and replication.



Spark/Flink consumes the data for processing.

Results are stored in databases, dashboards, or sent back to Kafka.

6. Summary
Kafka acts as a central messaging system for real-time data.
Spark processes Kafka streams using micro-batches, ideal for analytics and ETL.

Flink processes Kafka streams using true streaming, ideal for low-latency and stateful
applications.

Both frameworks can read from and write to Kafka topics, enabling scalable, fault-tolerant
streaming pipelines.

Apache Flink — Overview
1. Introduction to Apache Flink

Apache Flink is an open-source, distributed stream processing framework designed for high-
throughput, low-latency, and stateful data processing.

It is mainly used for real-time data analytics, event-driven applications, and streaming ETL
pipelines.

Unlike batch-oriented systems, Flink treats streaming as the primary model, and batch processing
is considered a special case of streaming.

2. Key Characteristics of Apache Flink

a) True Stream Processing

Processes data event by event (not micro-batches).
Enables millisecond-level latency.

Ideal for real-time applications like fraud detection and [oT monitoring.

b) Stateful Stream Processing

Flink can maintain state across events (e.g., counters, windows, sessions).



State is stored reliably using checkpoints and savepoints.

¢) Exactly-Once Semantics
Guarantees that each event is processed exactly once, even during failures.

Critical for financial and mission-critical applications.

d) Event-Time Processing
Processes data based on the time when the event occurred, not when it arrived.

Handles out-of-order and late events using watermarks.

3. Flink Architecture

a) JobManager

Coordinates execution of Flink jobs.

Responsible for:task scheduling,checkpoint coordination,failure recovery
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b) TaskManager

Executes tasks assigned by the JobManager.

Handles:data processing,state storage,network communication

¢) Flink Cluster

Consists of one or more JobManagers and multiple TaskManagers.

Can run on:standalone mode,yarn,kubernetes,cloud platforms

4. Flink Programming Model

Core Abstractions

DataStream API — for stream processing

DataSet API — for batch processing (being phased out)
Table & SQL API — relational processing using SQL
Basic Stream Operations

map()

filter()

flatMap()

keyBy()

window()

reduce() / aggregate()

5. Windowing in Flink

Flink supports advanced windowing techniques:
Tumbling Windows — fixed-size, non-overlapping
Sliding Windows — fixed-size, overlapping

Session Windows — based on activity gaps

These windows allow real-time aggregations such as:

Count per minute



Average temperature per hour

User session analysis

6. Fault Tolerance in Flink

Uses distributed snapshots (checkpoints).
Automatically recovers from failures.
Supports exactly-once state consistency.

Savepoints allow manual backup and upgrades.

7. Integration with Big Data Ecosystem
Apache Flink integrates easily with:
Apache Kafka — data ingestion and output
HDFS / S3 — storage

Apache Cassandra, HBase — databases

Spark, Hadoop — big data platforms

8. Common Use Cases of Apache Flink
Real-time fraud detection

IoT and sensor data processing
Clickstream and log analytics

Streaming ETL pipelines

Real-time recommendation systems

Monitoring and alerting systems

9. Advantages of Apache Flink
Low-latency, real-time processing

Strong fault tolerance



Advanced event-time and window support
Scalable and distributed

Exactly-once guarantees

10. Limitations
More complex to learn than Spark
Requires careful state management

Smaller ecosystem compared to Spark

11. Comparison with Spark

Feature Apache Flink Apache Spark
Processing Model True streaming Micro-batch
Latency Very low Higher
Event-Time Support Strong Limited

Stateful Processing Advanced Moderate

Best Use Case Real-time systems Analytics & ETL

12. Conclusion

Apache Flink is a powerful stream processing framework designed for low-latency, stateful, and
fault-tolerant real-time applications.

It is especially suitable for event-driven systems where accuracy, timeliness, and reliability are
critical.

Case Study: Stream Ingestion from Sensors / IoT to Database
1. Background and Motivation

With the rapid growth of [oT (Internet of Things), millions of sensors are deployed in domains
such as smart cities, healthcare, agriculture, manufacturing, and energy systems.

These sensors continuously generate high-volume, high-velocity, and time-sensitive data.



Traditional batch-based systems are not suitable for handling:
Continuous data streams

Real-time monitoring requirements

Low-latency decision-making

Hence, a stream ingestion architecture is required to ingest, process, and store loT data in real
time.

2. Problem Statement

Design a scalable, fault-tolerant streaming pipeline that:
Collects real-time sensor data

Processes it with low latency

Handles failures and data bursts

Stores processed data in a database

Supports analytics, alerts, and historical analysis

3. High-Level Architecture
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4. Detailed System Architecture Components

4.1 10T Sensors (Data Source Layer)

Physical devices such as:temperature sensors,humidity sensors,pressure sensors,smart meters
Generate data continuously at regular intervals.

Data is usually lightweight and encoded in JSON, Avro, or Protobuf.

Example Sensor Record:
Json
{
“sensor_id”: “TEMP_45”,
“value”: 36.8,
“unit”: “C”,

“timestamp”: “2025-03-10T10:15:302”

Challenges at this layer:
Network unreliability
High data velocity

Device heterogeneity

4.2 Data Ingestion Layer — Apache Kafka

Apache Kafka acts as the central ingestion backbone.
Role of Kafka:

Receives data from thousands of sensors

Buffers and persists streaming data

Decouples producers (sensors) from consumers (processors)



Key Kafka Features Used:

Topics: Separate streams for different sensor types
Partitions: Enable parallel ingestion and scalability
Replication: Ensures fault tolerance and durability

Retention policy: Stores data for reprocessing if needed

Why Kafka is critical:
Handles burst traffic efficiently
Prevents data loss

Supports multiple consumers simultaneously

4.3 Stream Processing Layer — Apache Flink

Apache Flink consumes data from Kafka and performs real-time stream processing.
Processing Operations:

Data validation (remove corrupt records)

Filtering (remove out-of-range values)

Aggregation (average, max, min)

Windowing (time-based analysis)

Event-time processing with watermarks

Stateful computations

Alert generation

Example Processing Logic:

Java

keyBy(sensor id)
.window(TumblingEventTimeWindows.of( Time.minutes(1)))

.avg(“value”)



Why Flink is chosen:

True event-by-event processing
Millisecond-level latency
Exactly-once processing semantics
Strong state management

Handles out-of-order and late events

4.4 Storage Layer — Database

Processed data is stored in a database for long-term use.
Common Database Choices:

Time-series DB: InfluxDB, TimescaleDB

NoSQL DB: Cassandra, MongoDB

Relational DB: PostgreSQL, MySQL

Stored Data Is Used For:
Real-time dashboards
Historical trend analysis
Reporting

Machine learning models

Regulatory compliance

5. End-to-End Data Flow (Step-by-Step)
Sensors continuously generate data.

Data is published to Kafka topics.

Kafka partitions data for parallelism.

Flink consumes streams from Kafka.

Flink performs real-time transformations.



Aggregated/cleaned data is written to the database.

Dashboards and applications query the database.

6. Fault Tolerance and Reliability

Kafka replicates data across brokers.

Flink uses checkpointing for state recovery.
Exactly-once guarantees prevent duplication.

System automatically recovers from failures.

7. Real-World Use Case Example

Smart Factory Monitoring System

Sensors monitor machine temperature and vibration.
Kafka ingests millions of events per minute.

Flink detects anomalies in real time.

Alerts are generated before machine failure.

Historical data improves predictive maintenance.

8. Advantages of the Proposed Architecture
Highly scalable and distributed

Real-time processing capability

Fault tolerant and reliable

Handles high data velocity

Supports Al and ML pipelines

Flexible integration with cloud platforms

9. Challenges and Limitations

Managing schema evolution



Database write bottlenecks
Handling extremely late events
Operational complexity

Monitoring and debugging distributed systems

10. Conclusion
This case study demonstrates a robust real-time stream ingestion pipeline for IoT data.

By using Kafka for ingestion, Flink for processing, and a database for storage, the system
achieves scalability, reliability, and low-latency analytics, making it suitable for modern IoT and
smart applications.



