24CS404 OPERATING SYSTEMS

1. PROCESS AND THREAD LIFECYCLE IN LINUX AND ANDROID
1.1. Process Life Cycle in Linux:
Process:
» A program in execution is known as process.
» When a program is loaded in memory for execution it is said to be process.
» Program is a set of instruction to be executed in order to perform a specific
task.
» A program becomes a process when an executable file is loaded into
memory.
> Process is an active entity and program is passive entity.

> A process is the unit of work in a modern time-sharing system.

max
stack

|

heap

data

text

o}

Figure Process in memory.

Process Creation:

» Process creation is the mechanism by which a running process creates a new
process called a child process.

» The creating process is known as the parent, and both form a parent-child
relationship.

» The child process may share all, some, or none of the parent’s resources.

» Parent and child can execute concurrently, or the parent may wait for the child
to finish.

» In UNIX systems, process creation is achieved using the fork() system call,

often followed by exec().

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

parent (pid = 0) - ' ~—
— waail() J—— parent resumes

- / .__ L
parent —*'\E'd - I'or‘n;léip.) I
(exec) ——»(exit))

child (pid = 0) Jpa —

Process creation using the fork () system call.
Process Termination:

> Process Termination is the final stage of a process life cycle where a process
stops execution.

» A process normally terminates after completing its execution using an exit
system call.

> A process may also be terminated by its parent due to errors, resource limits,
or user requests.

» On termination, the operating system releases all resources allocated to the
process.

» If the parent does not collect the child’s exit status, the terminated process

becomes a zombie.

Context Switching:

process P, operating system process P,

interrupt or system call
executing “

\ | save state into PCB, |

. |
> idle

[teloéd'state from PCB,|

=

ridie interrupt or system call executing

| T~

| save state into PCB, |

y L
° r idle
.

lreload state from PCB,|

executing & x

When the CPU switches from executing one process to another, the OS saves

the state of the current process and loads the state of the next process

Process Control Block (PCB):

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

» Each process is represented in the operating system by a Process Control
Block (PCB).
> Process control block also called a task control block.

Information associated with process control block are

v Process state - The state may be new, ready, running, waiting, halted, and so
on.

v Program counter-The counter indicates the address of the next instruction to
be executed for this process.

v CPU registers -The registers vary in number and type, depending on the
computer architecture.

v They include accumulators, index registers, stack pointers, and general-purpose
registers, plus any condition-code information.

v CPU-scheduling information - This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.

v Memory-management information - It contains information such as the
value of the base and limit registers and the page tables, or the segment
tables,

v Accounting information - This information includes the amount of CPU and
real time used, time limits, account numbers, job or process numbers, and so
on.

v I/0 status information - This information includes the list of I/O devices

allocated to the process, a list of open files, and so on.

process state

process number

program counter

registers

memory limits

list of open files

Process Life Cycle:
> A process is a program in execution. As a process executes, it changes state
according to its current activity.
» This sequence of states through which a process passes is called the

process life cycle.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

Processes transition between states during their execution:
1. Creation: Initiated by the operating system using system calls (e.g., fork() in
Unix/Linux).

2. Execution: The process moves between Ready and Running states based on
CPU scheduling.

3. Waiting: If the process requires I/O or another event, it transitions to the
Waiting state.

4. Termination: Once execution is complete or manually stopped, the process is

terminated, and resources are released.

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Process State:
1. New:

» The process is being created.
» OS allocates memory and initializes process control data.
» The program has not yet been admitted to the ready queue.
2. Ready:
» The process is loaded into main memory.
> It is ready to execute but waiting for CPU allocation.
» Multiple processes can be in the ready state at the same time.
3. Running:
» The process is currently executing on the CPU.
» At any instant, only one process can be in the running state on a single-core
CPU.
» The process may be preempted by the scheduler.
4. Waiting (or Blocked):
» The process cannot continue execution until some event occurs.
> Typical events:
o I/O completion
o Signal reception

o Resource availability

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

» The process does not compete for CPU in this state.
5. Terminated (Exit):
» The process has finished execution.
> OS releases all resources allocated to the process.
» The process control block (PCB) is removed.
1.2. Thread Life Cycle in Linux:

The thread life cycle in Linux describes the sequence of states a thread
passes through from creation to termination.Threads are created using the clone()
system call, usually via pthread_create().

1. Thread Creation: A new thread is created using pthread_create().

2. Thread Execution: The thread starts executing and runs until it completes or
is interrupted.

3. Thread Sleep: The thread can sleep or wait for a resource using
pthread_cond_wait() or sleep().

4. Thread Wake-up: The thread is woken up by a signal or when the resource
becomes available.

5. Thread Termination: The thread completes execution or is terminated using
pthread_exit().

thread =

notify/notify All()
resume()
or when sleep time is up

wait(), sleep(), suspend()

1. New State
v A thread is in the New state when it is created but not yet scheduled for
execution.
v" Memory and thread control structures are allocated.
v The thread has not started executing its run function.
Transition
o pthread_create()

— Moves the thread from New — Runnable

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

2. Runnable (Ready) State
v The thread is ready to execute and waiting for CPU allocation.
v It is placed in the ready queue by the scheduler.
v' The thread can run as soon as the CPU is available.
Transition
« Runnable — Running : When the scheduler assigns CPU time.
3. Running State
v' The thread is currently executing on the CPU.
v' Instructions of the thread are actively being processed.
Possible Transitions
1. Running — Runnable
o Yyield() voluntarily gives up the CPU.
o Preemption by scheduler.
2. Running — Blocked / Waiting / Sleeping
o Thread cannot continue execution because it is waiting for:
= I/O operation
= Lock or resource
= Condition variable
= Timer expiration
o Caused by: wait(), sleep(), suspend().
3. Running — Dead
o Thread completes execution or terminates.
o Caused by:
= pthread_exit()
= Returning from thread function
= Being cancelled
4. Blocked / Waiting / Sleeping State:
v' The thread is temporarily inactive.
v' It is not eligible for CPU allocation.
v' Waiting for an external event or condition.

Examples:
« Waiting for file I/0.

o Waiting for a mutex or semaphore.

« Sleeping for a fixed time.
« Waiting on condition variables.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

Transition:
« Blocked — Runnable
When:
o notify() or notifyAll() is called.
o resume() is issued.
o Sleep time expires.
o Resource becomes available.
5. Dead (Terminated) State:
e The thread has finished execution.
o It no longer consumes CPU.
o Thread resources are released (or reclaimed after pthread_join()).
Causes:
e Normal completion
o Explicit call to pthread_exit()
o Thread cancellation
1.3. Android Process Life Cycle:
> Android Process Life Cycle, which shows how Android manages
application processes based on priority and memory availability.
» Android may move processes between states or terminate them to keep the
system responsive.
1. Foreground Process (Highest Priority):
A process is considered foreground if:
v' It contains an Activity interacting with the user.
v It runs a foreground Service (e.g., music playback).
v' It is executing a BroadcastReceiver.
v' It has a Service bound to a foreground Activity.
v Rarely killed by the system.
2. Visible Process:
v' Contains an Activity that is visible but not in focus.
v Example: Activity partially covered by a dialog.
v Killed only if memory is extremely low.
3. Service Process:
v Running a background Service.

v Example: downloading data, syncing information.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS
v More likely to be killed than visible processes.

2, Android Process Life Cycle

[_ Fore groun d Process Active App / Foreground Service Process Created

Highest Priority . I o

Foreground / Visible

l

O¥ Service Process Background Services Background

Lower Priority 1
D O N S

Empty

No Active Components l
Lowest Priority

& Process Terminated > Killed to Free Up Memory

4. Background Process:
v" Contains Activities not visible to the user.
v' Activities are in the stopped state.
v Frequently killed to free memory.

5. Empty Process (Lowest Priority):
v" No active application components.
v' Kept only for caching to improve startup speed.
v First to be killed when memory is needed.

Activity Lifecycle in Android:

1. onCreate():
v It is called when the activity is first created.
v' This is where all the static work is done like creating views, binding data to

lists, etc.
v This method also provides a Bundle containing its previous frozen state, if
there was one.

2. onStart():
v' It is invoked when the activity is visible to the user.
v It is followed by onResume() if the activity is invoked from the background.
v' It is also invoked after onCreate() when the activity is first started.

3. onRestart():
v' It is invoked after the activity has been stopped and prior to its starting

stage.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

v' Thus is always followed by onStart() when any activity is revived from

background to on-screen.

Activity

Launched

> on Create()

v

on Start()

~

¥

User navigates

$r on Resume()
to the activity

s

on Restart()

A

Activity

App process

killed

running

Another activity comes
into the foreground

+

Apps with higher priority on Pause()

need memory

User returns
to the activity

|
The activity is
no longer visible

i

on Stopl}

User navigates
to the activity

I
The activity is finishing or
being destroyed by the system

on Destroy()

!

Activity
shut down

Activity Lifecycle in Android

4. onResume():

v
v

It is invoked when the activity starts interacting with the user.

At this point, the activity is at the top of the activity stack, with a user

interacting with it.

Always followed by onPause() when the activity goes into the background or

is closed by the user.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

5. onPause():

v' It is invoked when an activity is going into the background but has not yet
been killed.

v' It is a counterpart to onResume(). When an activity is launched in front of
another activity, this callback will be invoked on the top activity (currently on
screen).

v The activity, under the active activity, will not be created until the active
activity's onPause() returns, so it is recommended that heavy processing
should not be done in this part.

6. onStop():

v' It is invoked when the activity is not visible to the user.

v It is followed by onRestart() when the activity is revoked from the
background, followed by onDestroy() when the activity is closed or finished,
and nothing when the activity remains on the background only.

v" Note that this method may never be called, in low memory situations where
the system does not have enough memory to keep the activity's process
running after its onPause() method is called.

7. onDestroy()

v' The final call received before the activity is destroyed.

v' This can happen either because the activity is finishing (when finish() is
invoked) or because the system is temporarily destroying this instance of the
activity to save space.

v' To distinguish between these scenarios, check it with isFinishing() method.

1.4. Thread Lifecycle in Android:

Start() Runnable

New Thread()

Running

Waiting

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

> A thread in Android is a separate path of execution that allows concurrent
operations within an application.
» Every thread in Android has a lifecycle, representing the states it can be in
from creation to termination.
. New (Created):
v A thread is in the New state when an instance of Thread is created but
start() has not yet been called.
v' Example: Thread t = new Thread();
v Key point: The thread is only an object in memory, not yet executing.
. Runnable:
v After start() is called, the thread enters the Runnable state.
v' It is now eligible to run but may wait for CPU scheduling.
v Example: t.start();
v Key point: The thread scheduler decides when it will actually run.
. Running:
v When the thread scheduler picks a thread from the Runnable pool, it enters
the Running state.
v' The run() method executes.
v Key point: Only one thread runs per CPU core at a time, but multiple
threads can be running on multiple cores.
. Blocked / Waiting / Timed Waiting:
v A thread may enter these states if it is waiting for a resource or sleeping:
o Waiting: wait() - waits indefinitely until notified.
o Timed Waiting: sleep(milliseconds) or join(milliseconds) - waits for a
fixed time.
o Blocked: Waiting to acquire a lock on an object for synchronization.
. Terminated (Dead):
v' After the run() method completes or the thread is stopped, it enters the
Terminated state.

v Key point: A terminated thread cannot be restarted.

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

	1. New:
	2. Ready:
	3. Running:
	4. Waiting (or Blocked):
	5. Terminated (Exit):
	1. New State
	2. Runnable (Ready) State
	3. Running State
	4. Blocked / Waiting / Sleeping State:
	5. Dead (Terminated) State:
	1. onCreate():
	2. onStart():
	3. onRestart():
	4. onResume():
	5. onPause():
	6. onStop():
	7. onDestroy()

