### <u>3.2 GRAPHS TRAVERSALS – BFS</u>

Graph Traversal is the process of visiting all the vertices (nodes) of a graph in a specific order, starting from a chosen node and moving through its edges according to a set of rules.

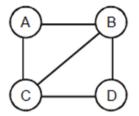
### **Breadth-first traversal**

Traversing the graph means examining all the nodes and vertices of the graph.

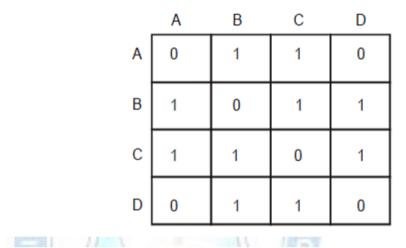
#### Two standard methods

- Breadth First Search
- Depth First Search

## **Breadth First Search (BFS) Algorithm**


- Breadth first search is a graph traversal algorithm that starts traversing the graph from root node and explores all the neighboring nodes.
- Then, it selects the nearest node and explore all the unexplored nodes.
- The algorithm follows the same process for each of the nearest node until it finds the goal.

### **Algorithm**


Steps to implement breadth first search

- **Step 1:** Choose any node in the graph, designate it as the search node and mark it as visited.
- **Step 2:** Using the adjacency matrix of the graph, find all the unvisited adjacent nodes to the search node and enqueue them into the queue Q.
- **Step 3:** Then the node is dequeued from the queue. Mark that node as visited and designate it as the new search node.
- **Step 4:** Repeat step 2 and 3 using the new search node.
- **Step 5:** This process continues until the queue Q which keeps track of the adjacent nodes is empty.

# Example:



## Adjacency matrix



#### Implementation

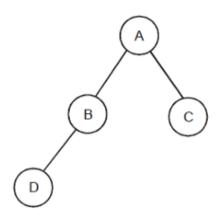
- 1. Let 'A' be the source vertex. Mark it to as visited.
- Find the adjacent unvisited vertices of 'A' and enqueue then into the queue.
  Here B and C are adjacent nodes of A



and B and C are enqueued.

3. Then vertex 'B' is dequeued and its adjacent vertices C and D are taken from the adjacency matrix for enqueuing. Since vertex C is already in the queue, vertex D alone is enqueued.




Here B is dequeued, D is enqueued.

4. Then vertex 'C' is dequeued and its adjacent vertices A, B and D are found out. Since vertices A and B are already visited and vertex D is also in the queue, no enqueue operation takes place.

| D |  |
|---|--|

Here C is dequeued

5. Then vertex 'D' is dequeued. This process terminates as all the vertices are visited and the queue is also empty.



Breadth first spanning tree

# Applications of breadth first search

1. To check whether the graph is connected or not.

