1.5 SOLVED PROBLEMS

Determine whether the following systems are linear or not 2(2) = 2 (2 - 2) + 2(2²).

Solution:

Output due to weighted sum of inputs:

$$y_3(n) = ax_1(n-2) + bx_2(n-2) + ax_1(n^2) + bx_2(n^2) - \dots (1)$$

Weighted sum of outputs:

For input $x_1(n)$:

$$y_1(n) = x_1(n-2) + x_1(n^2)$$

For input $x_2(n)$:

$$y_{2}(n) = x_{2}(n-2) + x_{2}(n^{2})$$

$$ay_{1}(n) + by_{2}(n) = ax_{1}(n-2) + ax_{1}(n^{2}) + bx_{2}(n-2) + bx_{2}(n^{2}) - - - - - (2)$$

$$y_{3}(n) = ay_{1}(n) + by_{2}(n)$$

$$(1)=(2)$$

∴ The system is Linear.

2. Determine whether the following systems are linear or not

$$\frac{dy(t)}{dt} + 3ty(t) = t^2x(t).$$

Solution:

Condition for Linearity:

$$T[ax_1(t) + bx_2(t)] = ay_1(t) + by_2(t)$$

 $T[ax1(t) + bx2(t)] \rightarrow$

$$\frac{d}{dt} [ay_{1}(t) + by_{2}(t)] + 3t[ay_{1}(t) + by_{2}(t)]$$

$$= t^{2} [ax_{1}(t) + bx_{2}(t)] - - - - (1)$$

$$ay_{1}(t) \rightarrow \frac{ady_{1}(t)}{dt} + 3tay_{1}(t) = t^{2}ax_{1}(t) - - - - (2)$$

$$ay_{2}(t) \rightarrow \frac{ady_{2}(t)}{dt} + 3tay_{2}(t) = t^{2}ax_{2}(t) - - - - (3)$$

Adding equ (2) and (3) we get,

$$\frac{d}{dt}[ay_1(t) + by_2(t)] + 3t[ay_1(t) + by_2(t)]$$

$$= t^2[ax_1(t) + bx_2(t)] - - - - (4)$$
(1)=(4)

∴ This is a Linear system.

3. Determine whether the following systems are static or dynamic

$$2(2) = 2(22) + 22(2).$$

Solution:

For t=0,
$$y(0) = x(0) + 2x(0) \Rightarrow$$
 present inputs
For t=-1, $y(-1) = x(-2) + 2x(-1) \Rightarrow$ past and present inputs
For t=1, $y(1) = x(2) + 2x(1) \Rightarrow$ future and present inputs

Since output depends on past and future inputs the given system is dynamic system.

4. Determine whether the following systems are static or dynamic

$$2(2) = 2222(2)$$
.

Solution:

For n=0,
$$y(0) = sinx(0) \Rightarrow$$
 present input
For n=-1, $y(-1) = sinx(-1) \Rightarrow$ present input
For n=1, $y(1) = sinx(1) \Rightarrow$ present input

Since output depends on present input the given system is Static system

5. Determine whether the following systems are time invariant or not

$$2(2) = 2(2)22222.$$

Solution:

Output due to input delayed by T seconds

$$y(t,T) = x(t-T)sinwt$$

Output delayed by T seconds

$$y(t-T) = x(t-T)sinw(t-T)$$

$$v$$
 $v(t,T) \neq v(t-T)$

The given system is time variant

6. Determine whether the following systems are time invariant or not

$$2(2) = 2(-2 + 2).$$

Solution:

Output due to input delayed by k seconds

$$y(n,k) = x(-n+2-k)$$

Output delayed by k seconds

$$y(n-k) = x(-(n-k)+2) = x(-n+k+2)$$
$$y(n,k) \neq y(n-k)$$

The given system is time variant

7. Determine whether the following systems are causal or not

$$y(t) = \frac{dx(t)}{dt} + 2x(t)$$

Solution:

The given equation is differential equation and the output depends on past input. Hence the given system is **Causal**.

8. Determine whether the following systems are causal or not

$$2(2) = 2222(2)$$

Solution:

For n=0,
$$y(0) = sinx(0) \Rightarrow present input$$

For n=-1, $y(-1) = sinx(-1) \Rightarrow present input$
For n=1, $y(1) = sinx(1) \Rightarrow present input$

Since output depends on present input the given system is Causal system

9. Determine whether the following system is stable or not y(n) = 3x(n). Solution:

Let
$$x(n) = \delta(n), y(n) = h(n)$$

 $\Rightarrow h(n) = 3\delta(n)$
Condition for stability $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$

$$\sum_{k=-\infty}^{\infty} |h(k)| = \sum_{k=0}^{\infty} |3\delta(k)| = \sum_{k=0}^{\infty} 3\delta(k) = 3$$

$$\forall \delta(k) = 0 \text{ for } k \neq 0 \text{ and } \delta(k) = 1 \text{ for } k = 0$$

$$\forall \sum_{k=-\infty}^{\infty} |h(k)| < \infty \text{ the given system is stable}$$

10. Determine whether the following system is stable or not

$$h(t) = e^{3t}u(t-2)$$

Solution:

Condition for stability
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

$$\int_{-\infty}^{\infty} |h(t)| dt = \int_{2}^{\infty} e^{3t} dt$$
$$= \left[\frac{e^{3t}}{3}\right]_{2}^{\infty} = \infty$$

∴ The system is unstable.