24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT II - INHERITANCE AND POLYMORPHISM 9
Inheritance: Types - Access rules, super classes and sub classes — Overriding methods -
Overriding vs overloading. Polymorphism: Static binding — Dynamic binding — Method
overloading - Runtime polymorphism. Package: Create - Import — Exception handling:
Exception - Types — Try and catch - Multiple catch - Nested try — throw - throws — finally
- User defined exception.

INHERITANCE
Reusability is another concept of OOPS. It is always better to reuse something that
already exists than creating it all over again. This is done by creating new classes and
using the properties of existing ones. This mechanism of deriving a new class from an old
one is called inheritance.
Inheritance is implemented in two ways:
1. Inheriting from classes (Extending classes)
2. Inheriting from interfaces (Implementing interfaces)
Inheriting from classes:
General form of Inheritance:
class Derivedclass name extends Baseclass name

{

//ITmplementation code
b
Super classes: The old class from which properties are derived in a new class is called as
base class or super class or parent class
Sub classes: The new class which derives properties from an already existing class is
called a subclass or child class.
Advantages:
e [t provides ideas of reusability.
e Deriving a new class from the existing one. The new class will have the combined
features of both the classes.
e The inheritance mechanism allows the programmer to reuse a class.
TYPES OF INHERITANCE:
There are four types of Inheritance
Single inheritance (only one base class)
Multilevel inheritance(derived from an already derived child class)
Hierarchical inheritance(one base class, many child classes)

el oA

Hybrid inheritance(combination of above one inheritance)

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

1. Single Inheritance:
Single inheritance in Java refers to the inheritance relationship where a subclass
extends only one superclass. Here’s an example demonstrating single inheritance.

A
class A {
}
class B extends A {
} B

It is a type of inheritance in which a child class (or) derived class(or) subclass
derives the property of base class (or) super class (or) parent class.
SYNTAX:
class childclassname extends baseclass-name

{

Set of statements;
b
Example:
class Bicycle
{
public int gear;
public int speed;
public Bicycle(int gear, int speed)

{
this.gear = gear;
this.speed = speed;
b
public void applyBrake(int decrement)
{
speed -= decrement;
b
public void speedUp(int increment)
{
speed += increment;
b
public String toString()
{

return ("No of gears are " + gear + "\n" + "speed of bicycle is " + speed);

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

b
b
class MountainBike extends Bicycle
{
public int seatHeight;
public MountainBike(int gear, int speed, int startHeight)
{
super(gear, speed);
seatHeight = startHeight;
b
public void setHeight(int newValue)
{
seatHeight = newValue;
b
@Override public String toString()
{
return (super.toString() + "\nseat height is "+ seatHeight);
b
b
public class Test
{
public static void main(String args[])
{
MountainBike mb = new MountainBike(3, 100, 25);
System.out.println(mb.toString());
b
b
Output:

No of gears are 3
speed of bicycle is 100
seat height is 25

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

2. Multilevel Inheritance:

Multilevel inheritance in Java refers to a scenario where a class inherits properties
and behaviors from another class, which in turn inherits from another class. This creates a
hierarchical structure of classes where each class inherits from the one above it.

class A {
N
¥

8

ralrnth

clags B axbends A [
|I.r

1

itk

class C extends B {

Example:
class Car
{
public Car()
{
System.out.println("Class Car");
b
public void vehicleType()
{
System.out.println("Vehicle Type: Car");
b
b
class Maruti extends Car
{
public Maruti()
{
System.out.println("Class Maruti");
b
public void brand()
{
System.out.println("Brand: Maruti");
b
public void speed()
{

System.out.println("Max: 90Kmph");

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

b
b
public class Maruti800 extends Maruti
{
public Maruti800()
{
System.out.println("Maruti Model: 800");
}
public void speed()
{
System.out.println("Max: 80Kmph");
b
public static void main(String args[])
{
Maruti800 obj=new Maruti800();
obj.vehicleType();
obj.brand();
obj.speed();
b
b
Output:
Class Car

Class Maruti
Maruti Model: 800
Vehicle Type: Car
Brand: Maruti
Max: 80Kmph

3. Hierarchical Inheritance:

Hierarchical inheritance in Java refers to a scenario where multiple classes inherit
properties and behaviors from a single parent class. In this inheritance structure, there is
one parent class and multiple child classes that inherit from it.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

elass & {
Pl
1

class B axtonds A class C extords A{ class O axbamds &
i i i
} b }

Example:
class Animal

{

void eat()

{

System.out.println(" Animal is eating");

}
// Child class 1 inheriting from Animal

class Dog extends Animal

{ void bark()
{
System.out.println("Dog 1s barking");
;
h

// Child class 2 inheriting from Animal
class Cat extends Animal

{
void meow()
{
System.out.println("Cat is meowing");
;
b
public class Main
d

public static void main(String[] args)

{
Dog dog = new Dog();

dog.eat(); // Inherited from Animal

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

dog.bark(); // Defined in Dog class
Cat cat = new Cat();

cat.eat(); // Inherited from Animal
cat.meow(); // Defined in Cat class

b
Output:

Animal is eating
Dog is barking
Animal is eating
Cat is meowing

3. Hybrid Inheritance:

Hybrid inheritance in Java refers to a combination of multiple inheritance and
hierarchical inheritance. In hybrid inheritance, a class is derived from two or more
classes, and these derived classes can further have their own subclasses. Java doesn’t
support multiple inheritance directly due to the diamond problem, but hybrid inheritance
can be achieved by combining hierarchical inheritance and interface implementation.

Example:
class Animal

{

void eat()

{

System.out.println(" Animal is eating");

}

class Dog extends Animal

{

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

void bark()
{
System.out.println("Dog is barking");
b
h
class Cat extends Animal
{
void meow()
{
System.out.println("Cat is meowing");
b
b
interface Domestic
{
void play();
b
interface DogBehavior extends Domestic
{
void guard();
b
class DomesticDog implements DogBehavior
{
public void play()
{
System.out.println("Domestic dog is playing");
b
public void guard()
{
System.out.println("Domestic dog is guarding");
b
b
public class Main
{

public static void main(String[] args)

{

DomesticDog dog = new DomesticDog();
dog.play(); // Defined in Domestic interface

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

dog.guard(); // Defined in DogBehavior interface

b
Output

Domestic dog is playing
Domestic dog is guarding
Multiple Inheritance

Multiple Inheritance is a feature of an object-oriented concept, where a class can
inherit properties of more than one parent class. The problem occurs when there exist
methods with the same signature in both the superclasses and subclass. On calling the
method, the compiler cannot determine which class method to be called and even on
calling which class method gets the priority. Multiple inheritance is implemented in java
using Interface
Interface in Java

An interface in java is a blueprint of a class. It has static constants and abstract
methods.The interface in java is a mechanism to achieve abstraction and multiple
inheritance.

Interface is declared by using interface keyword. It provides total abstraction;
means all the methods in interface are declared with empty body and are public and all
fields are public, static and final by default. A class that implement interface must
implement all the methods declared in the interface.

Syntax:
interface <interface name>
{
//declare constant fields
//declare methods that abstract by default.

b
Example:
interface [Printable
{
void print();
b
class A6 implements IPrintable
{
public void print()
{

System.out.println("Hello");

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

}
public static void main(String args|[])
{
A6 obj = new A6();
obj.print();
}
}
Output:
Hello

Example for Multiple inheritance
interface ICharacter

{
void attack();
b
interface [Weapon
{
void use();
b
class Warrior implements Character, Weapon
{
public void attack()
{
System.out.println("Warrior attacks with a sword.");
b
public void use()
{
System.out.println(" Warrior uses a sword.");
b
b
class Mage implements Character, Weapon
{
public void attack()
{
System.out.println("Mage attacks with a wand.");
}
public void use()
{

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

System.out.println("Mage uses a wand.");

b
b
public class MultipleInheritance
{
public static void main(String[] args)
{
Warrior warrior = new Warrior();
Mage mage = new Mage();
warrior.attack(); // Output: Warrior attacks with a sword.
warrior.use(); // Output: Warrior uses a sword.
mage.attack(); // Output: Mage attacks with a wand.
mage.use(); / Output: Mage uses a wand.
b
b
Output:

Warrior attacks with a sword.
Warrior uses a sword.

Mage attacks with a wand.
Mage uses a wand.

ACCESS RULES IN INHERITANCE
In Java, Access modifiers help to restrict the scope of a class, constructor, variable,
method, or data member. It provides security, accessibility, etc. to the user depending
upon the access modifier used with the element. In this article, let us learn about Java
Access Modifiers, their types, and the uses of access modifiers.
Types of Access Modifiers
There are 4 types of access modifiers available in Java:

1. Default — No keyword required

2. Private

3. Protected

4. Public

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Access Modifiers in Java

[Access Modifiers]

I
v v ¥ }
[Private H Default HProtected] [Public

1. Default Access Modifier

When no access modifier is specified for a class, method, or data member, it is
said to be having the default access modifier by default. The default access modifiers are
accessible only within the same package.
2. Private Access Modifier

The private access modifier is specified using the keyword private. The methods
or data members declared as private are accessible only within the class in which they are
declared. Any other class of the same package will not be able to access these members.
Top-level classes or interfaces can not be declared as private because, private means
“only visible within the enclosing class®. protected means “only visible within the
enclosing class and any subclasses*.

package pl;
class A
{
private void display()
{
System.out.println("Inside Private");
b
}
class B
{
public static void main(String args[])
{
A obj = new A();
obj.display();
b

}
3. Protected Access Modifier

The protected access modifier is specified using the keyword protected. The
methods or data members declared as protected are accessible within the same package or
subclasses in different packages.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

package pl;
public class A

{
protected void display()

{

System.out.println("Inside Protected");

}
Public Access Modifier

The public access modifier is specified using the keyword public. The public
access modifier has the widest scope among all other access modifiers. Classes, methods,
or data members that are declared as public are accessible from everywhere in the
program. There is no restriction on the scope of public data members.
package pl;
public class A

{
public void display()

{

System.out.println("Inside Public");

}

Comparison Table of Access Modifiers in Java

Same Class

Same Package
Non-Subclass

Different Package
Non-Subclass

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

Superclasses
A superclass is the class from which many subclasses can be created. The subclasses
inherit the characteristics of a superclass. The superclass is also known as the parent class
or base class.
Subclasses

A subclass is a class derived from the superclass. It inherits the properties of the
superclass and also contains attributes of its own. An example is:

VEHICLE

Specialization Generalization

|

Top down Bottom up
Approach Approach
CAR TRUCK MOTORCYCLE

“super” KEYWORD
Usage of super keyword

e super() invokes the constructor of the parent class.

e super.variable name refers to the variable in the parent class.

e super.method name refers to the method of the parent class.
1. super() invokes the constructor of the parent class

super() will invoke the constructor of the parent class. Even when you don’t add

super() keyword the compiler will add one and will invoke the Parent Class constructor.

Example:
class ParentClass
{
ParentClass()
{
System.out.println("Parent Class default Constructor");
}
j
public class SubClass extends ParentClass
{
SubClass()

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

http://www.javainterviewpoint.com/java-constructor-chaining-with-example/

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

{
System.out.println("Child Class default Constructor");
b
public static void main(String args[])
{
SubClass s = new SubClass();
b
}
Output:

Parent Class default Constructor

Child Class default Constructor

Even when we add explicitly also it behaves the same way as it did before.
class ParentClass

{
public ParentClass()
{
System.out.println("Parent Class default Constructor");
b
b
public class SubClass extends ParentClass
{
SubClass()
{
super();
System.out.println("Child Class default Constructor");
b
public static void main(String args[])
{
SubClass s = new SubClass();
b
b
Output:

Parent Class default Constructor
Child Class default Constructor

You can also call the parameterized constructor of the Parent Class. For example,
super(10) will call a parameterized constructor of the Parent class.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

class ParentClass

{
ParentClass()
{
System.out.println("Parent Class default Constructor called");
b
ParentClass(int val)
{
System.out.println("Parent Class parameterized Constructor, value: "+val);
b
b
public class SubClass extends ParentClass
{
SubClass()
{
super();
System.out.println("Child Class default Constructor called");
b
SubClass(int val)
{
super(10);
System.out.println("Child Class parameterized Constructor, value: "+val);
b
public static void main(String args[])
{
SubClass s = new SubClass();
SubClass s1 = new SubClass(10);
b
b
Output

Parent Class default Constructor called

Child Class default Constructor called

Parent Class parameterized Constructor, value: 10
Child Class parameterized Constructor, value: 10

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

2. super.variable name refers to the variable in the parent class
When we have the same variable in both parent and subclass
class ParentClass

{
int val=999;
b
public class SubClass extends ParentClass
{
int val=123;
void disp()
{
System.out.println("Value is : "+val);
h
public static void main(String args[])
{
SubClass s = new SubClass();
s.disp();
b
b
Output

Value is : 123

This will call only the val of the subclass only. Without super keyword, you cannot
call the val which is present in the Parent Class.
class ParentClass

{
int val=999;
b
public class SubClass extends ParentClass
{
int val=123;
void disp()
{
System.out.println("Value is : "+super.val);
b
public static void main(String args[])
{

SubClass s = new SubClass();

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

s.disp();

b
Output

Value is : 999
3. super.method_nae refers to the method of the parent class

When you override the Parent Class method in the Child Class without super
keywords support you will not be able to call the Parent Class method. Let’s look into the
below example
class ParentClass

{
void disp()
{
System.out.println("Parent Class method");
b
b
public class SubClass extends ParentClass
{
void disp()
{
System.out.println("Child Class method");
b
void show()
{
disp();
b
public static void main(String args[])
{
SubClass s = new SubClass();
s.show();
b
b
Output:
Child Class method

Here we have overridden the Parent Class disp() method in the SubClass and
hence SubClass disp() method is called. If we want to call the Parent Class disp() method
also means then we have to use the super keyword for it.

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

class ParentClass

{
void disp()
{
System.out.println("Parent Class method");
b
b
public class SubClass extends ParentClass
{
void disp()
{
System.out.println("Child Class method");
h
void show()
{
//Calling SubClass disp() method
disp();
//Calling ParentClass disp()
method super.disp();
b
public static void main(String args[])
{
SubClass s = new SubClass();
s.show();
b
b
Output
Child Class method

Parent Class method

When there is no method overriding then by default Parent Class disp() method
will be called.
class ParentClass

{
public void disp()

{

System.out.println("Parent Class method");

}

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CA201 - OBJECT ORIENTED PROGRAMMING USING JAVA

b
public class SubClass extends ParentClass
{
public void show()
{
disp();
b
public static void main(String args[])
{
SubClass s = new SubClass();
s.show();
b
h
Output:

Parent Class method

MCA ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

