
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

        4.2.DYNAMIC     MEMORY     ALLOCATION      

Dynamic Memory Allocation in C using malloc(), calloc(), free() and realloc()

Since C is a structured language, it has some fixed rules for programming. One of them includes

changing the size of an array. An array is a collection of items stored at contiguous memory

locations.

As can be seen, the length (size) of the array above is 9. But what if there is a requirement to

change this length (size)? For example,

If there is a situation where only 5 elements are needed to be entered in this array. In this

case, the remaining 4 indices are just wasting memory in this array. So there is a requirement

to lessen the length (size) of the array from 9 to 5.

Take another situation. In this, there is an array of 9 elements with all 9 indices filled. But

there is a need to enter 3 more elements in this array.  In this case, 3 indices more are

required. So the length (size) of the array needs to be changed from 9 to 12.

This procedure is referred to as Dynamic Memory Allocation in C.

Dynamic memory allocation using malloc(), calloc(), free(), and realloc() is essential

for efficient memory management in C.

Dynamic Memory Allocation can be defined as a procedure in which the size of a data 

structure (like Array) is changed during the runtime.

C provides some functions to achieve these tasks. There are 4 library functions provided by C 

defined under <stdlib.h> header file to facilitate dynamic memory allocation in C 

programming. They are:

1. malloc()



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ptr = (cast-type*) malloc(byte-size)

For Example:

2. calloc()

3. free()

4. realloc()

1.malloc ( ) METHOD

The “malloc” or “memory allocation” method in C is used to dynamically allocate a single 

large block of memory with the specified size. It returns a pointer of type void which can be cast

into a pointer of any form. It doesn’t Initialize memory at execution time so that it has initialized 

each block with the default garbage value initially.

Syntax of malloc() in C

ptr = (int*) malloc(100 * sizeof(int));

Since the size of int is 4 bytes, this statement will allocate 400 bytes of memory. And, the 

pointer ptr holds the address of the first byte in the allocated memory.

If space is insufficient, allocation fails and returns a NULL pointer.

Example of malloc() in C



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

#include  <stdio.h>

#include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created

int* ptr; 

int n, i;

// Get the number of elements for the array 

printf("Enter number of elements:"); 

scanf("%d",&n);

printf("Entered number of elements: %d\n", n);

// Dynamically allocate memory using malloc()



Enter number of elements:7 

Entered number of elements: 7

Memory successfully allocated using malloc. 

The elements of the array are: 1, 2, 3, 4, 5, 6, 7,

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ptr = (int*)malloc(n * sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not

if (ptr == NULL) {

printf("Memory not allocated.\n"); 

exit(0);

}

else {

// Memory has been successfully allocated

printf("Memory successfully allocated using malloc.\n");

// Get the elements of the array

for (i = 0; i < n; ++i) 

{ ptr[i] = i + 1;

}

// Print the elements of the array 

printf("The elements of the array are: "); 

for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

Output

2). calloc()         method      

1. “calloc”  or  “contiguous  allocation”  method  in  C  is  used  to  dynamically  allocate  the

specified  number of  blocks  of  memory of  the specified  type.  it  is  very much similar  to

malloc() but has two different points and these are:



#include  <stdio.h>

#include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created

int* ptr;

int n, i;

// Get the number of elements for the array

n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using calloc()

ptr = (int*)calloc(n, sizeof(int));

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2. It initializes each block with a default value ‘0’.

3. It has two parameters or arguments as compare to malloc(). 

Syntax of calloc() in C

ptr = (cast-type*)calloc(n, element)

here, n is the no. of elements and element-size is the size of each element.

For Example:

ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous spa

If space is insufficient, allocation fails and returns a NULL pointer.

Example of calloc() in C



Enter number of elements: 5

Memory successfully allocated using calloc. 

The elements of the array are: 1, 2, 3, 4, 5,

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

// Check if the memory has been successfully

// allocated by calloc or not

if (ptr == NULL) {

printf("Memory not allocated.\n"); 

exit(0);

}

else {

// Memory has been successfully allocated

printf("Memory successfully allocated using calloc.\n");

// Get the elements of the array

for (i = 0; i < n; ++i) 

{ ptr[i] = i + 1;

}

// Print the elements of the array 

printf("The elements of the array are: "); 

for (i = 0; i < n; ++i) {

printf("%d, ", ptr[i]);

}

}

return 0;

}

Output

3) free()         method      

“free” method in C is used to dynamically de-allocate the memory. The memory allocated using 

functions malloc() and calloc() is not de-allocated on their own. Hence the free() method is used,



free(ptr);

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

whenever the dynamic memory allocation takes place. It helps to reduce wastage of memory by 

freeing it.

Syntax of free() in C

Example of free() in C

#include  <stdio.h>

#include <stdlib.h>

int main()

{

// This pointer will hold the

// base address of the block created

int *ptr, *ptr1; 

int n, i;

// Get the number of elements for the array

n = 5;

printf("Enter number of elements: %d\n", n);

// Dynamically allocate memory using malloc()



Enter number of elements: 5

Memory successfully allocated using malloc. 

Malloc Memory successfully freed.

Memory successfully allocated using calloc.

Calloc Memory successfully freed.

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

ptr = (int*)malloc(n * sizeof(int));

// Dynamically allocate memory using calloc()

ptr1 = (int*)calloc(n, sizeof(int));

// Check if the memory has been successfully

// allocated by malloc or not

if (ptr == NULL || ptr1 == NULL) 

{ printf("Memory not allocated.\n"); 

exit(0);

}

else {

// Memory has been successfully allocated

printf("Memory successfully allocated using malloc.\n");

// Free the memory

free(ptr);

printf("Malloc Memory successfully freed.\n");

// Memory has been successfully allocated

printf("\nMemory successfully allocated using calloc.\n");

// Free the memory

free(ptr1);

printf("Calloc Memory successfully freed.\n");

}

return 0;

}

Output



ptr = realloc(ptr, newSize);

where ptr is reallocated with new size 'newSize'.

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

4). realloc()         method      

“realloc” or “re-allocation” method in C is used to dynamically change the memory allocation

of a previously allocated memory. In other words, if the memory previously allocated with the

help of malloc or calloc is insufficient, realloc can be used to dynamically re-allocate memory.

re-allocation of memory maintains the already present value and new blocks will be initialized

with the default garbage value.

Syntax of realloc() in C

#include  <stdio.h>

#include <stdlib.h>

int main()

{

int index = 0, i = 0, n,

*marks; // this marks pointer hold the base address

// of the block created

int ans;

marks = (int*)malloc(sizeof(



24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

int)); // dynamically allocate memory using malloc

// check if the memory is successfully allocated by

// malloc or not?

if (marks == NULL) {

printf("memory cannot be allocated");

}

else {

// memory has successfully allocated

printf("Memory has been successfully allocated by " 

"using malloc\n");

printf("\n marks = %pc\n",

marks); // print the base or beginning

// address of allocated memory

do {

printf("\n Enter Marks\n");

scanf("%d", &marks[index]); // Get the marks 

printf("would you like to add more(1/0): "); 

scanf("%d", &ans);

if (ans == 1) {

index++;

marks = (int*)realloc(

marks,

(index + 1)

* sizeof(

int)); // Dynamically reallocate

// memory by using realloc

// check if the memory is successfully

// allocated by realloc or not?

if (marks == NULL) {

printf("memory cannot be allocated");

}



24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

else {

printf("Memory has been successfully " 

"reallocated using realloc:\n");

printf(

"\n base address of marks are:%pc", 

marks); ////print the base or

///beginning address of

///allocated memory

}

}

} while (ans == 1);

// print the marks of the students

for (i = 0; i <= index; i++) {

printf("marks of students %d are: %d\n ", i, 

marks[i]);

}

free(marks);

}

return 0;

}


	​ 4.2.DYNAMIC MEMORY ALLOCATION
	Dynamic Memory Allocation in C using malloc(), calloc(), free() and realloc()
	1. malloc ( ) METHOD
	Syntax of malloc() in C
	ptr = (int*) malloc(100 * sizeof(int));

	For Example:
	ptr = (float*) calloc(25, sizeof(float));

	Syntax of realloc() in C
	else {


