

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

3.4 BINARY SEARCH TREE ADT

In a Binary search tree, the value of left node must be smaller than the parent

node, and the value of right node must be greater than the parent node. This

rule is applied recursively to the left and right subtrees of the root.

 Every BST is a Binary Tree

 But Not every binary tree is a BST

Declaration Routine for Binary Search

Tree class TreeNode:

Node* createNode(int data)

{

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = data;

 newNode->left = newNode->right = NULL;

 return newNode;

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

Insert : -

To insert the element X into the tree,

* Check with the root node T

* If it is less than the root,

Traverse the left subtree recursively until it reaches the T ->left

equals to NULL. Then X is placed in T -> left.

* If X is greater than the root.

Traverse the right subtree recursively until it reaches the T ->

right equals to NULL. Then X is placed in T-> Right.

Routine to Insert into a Binary Search Tree

Node* insert(Node* root, int data)

{

 if (root == NULL)

 {

 return createNode(data);

 }

 if (data < root->data)

 {

 root->left = insert(root->left, data);

 }

 else if (data > root->data)

 {

 root->right = insert(root->right, data);

 }

 return root;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

Find : -

 Check whether the root is NULL if so then return NULL.

 Otherwise, Check the value X with the root node value (i.e. T -> data)

(1) If X is equal to T -> data, return T.

(2) If X is less than T -> data, Traverse the left of T recursively.

(3) If X is greater than T -> data, traverse the right of T recursively.

Routine for find Operation

Node* search(Node* root, int key)

{

 if (root == NULL || root->data == key)

 return root;

 if (key < root->data)

 return search(root->left, key);

 return search(root->right, key);

AFTER 3

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

}

Find Min :

 This operation returns the position of the smallest element in the tree.

 To perform FindMin, start at the root and go left as long as there is

a left child. The stopping point is the smallest element.

Recursive routine to find minimum

Node* findMin(Node* root)

{

 while (root && root->left != NULL)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

 root = root->left;

 return root;

}

FindMax

FindMax routine return the position of largest elements in the tree. To perform

a FindMax, start at the root and go right as long as there is a right child. The

stopping point is the largest element.

Recursive routine to find maximum

Node* findMax(Node* root)

{

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

24CS402- DATA STRUCTURES USING C++

 while (root && root->right != NULL)

 root = root->right;

 return root;

}

Delete :

Deletion operation is the complex operation in the Binary search tree. To delete

an element, consider the following three possibilities.

CASE 1: Node to be deleted is a leaf node (i.e) No children.

CASE 2: Node with one child.

CASE 3: Node with two children.

CASE 1 Node with no children (Leaf node)

If the node is a leaf node, it can be deleted immediately.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

24CS402- DATA STRUCTURES USING C++

CASE 2 : - Node with one child

If the node has one child, it can be deleted by adjusting its parent pointer that

points to its child node.

Case 3: Node with two children

It is difficult to delete a node which has two children. The general strategy is

to replace the data of the node to be deleted with its smallest data of the

right subtree and recursively delete that node.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

24CS402- DATA STRUCTURES USING C++

After deleting the node 5

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

24CS402- DATA STRUCTURES USING C++

Example 2 — To Delete 25

at the right subtree of 25 is 30

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 11

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 12

24CS402- DATA STRUCTURES USING C++

Routine for deletion from BST Node*

deleteNode(Node* root, int key)

{

 if (root == NULL)

 return root;

 if (key < root->data)

 root->left = deleteNode(root->left, key);

 else if (key > root->data)

 root->right = deleteNode(root->right, key);

 else

 {

 // Node with one or no child

 if (root->left == NULL)

 {

 Node* temp = root->right;

 free(root);

 return temp;

 }

 else if (root->right == NULL)

 {

 Node* temp = root->left;

 free(root);

 return temp;

 }

