24CS402- DATA STRUCTURES USING C++

.4 BINARY SEARCH TREE ADT

In a Binary search tree, the value of left node must be smaller than the parent
node, and the value of right node must be greater than the parent node. This

rule is applied recursively to the left and right subtrees of the root.

e But Not every binary tree is a BST

e Every BST is a Binary Tree

Declaration Routine for Binary Search

Tree class TreeNode:

Node* createNode(int data)

{
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;

b

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

Insert: -

To insert the element X into the tree,
* Check with the root node T
* If it is less than the root,

Traverse the left subtree recursively until it reaches the T ->left
equals to NULL. Then X is placed in T -> left.
* If X is greater than the root.
Traverse the right subtree recursively until it reaches the T ->
right equals to NULL. Then X is placed in T-> Right.
Routine to Insert into a Binary Search Tree

Node* insert(Node* root, int data)

{
if (root == NULL)

{

return createNode(data);

¥

if (data < root->data)

{

root->left = insert(root->left, data);

by

else if (data > root->data)

{

root->right = insert(root->right, data);

by

return root;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

Example : -
To insert 8. 5. 10, 15, 20, 18. 3

#* First element 8 1s considered as Root.

° As 5 < 8, Traverse towards left

° o 10 > 8, Traverse towards Right.

° o Sinmularly the rest of the elements are traversed.

After 20 After 18

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS402- DATA STRUCTURES USING C++

AFTER 3

Find : -
e Check whether the root is NULL if so then return NULL.
e Otherwise, Check the value X with the root node value (i.e. T -> data)
(1) If X is equal to T -> data, return T.
(2) If X is less than T -> data, Traverse the left of T recursively.

(3) If X is greater than T -> data, traverse the right of T recursively.

Routine for find Operation
Node* search(Node* root, int key)

{
if (root == NULL || root->data == key)

return root;

if (key < root->data)

return search(root->left, key);

return search(root->right, key);

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

Example : - To Find an element 10 (consider, X = 10)
On
10 is checked with the Root 10 > 8. Go to the right child of 8
() (o)
10 is checked with Root 15 10 < 15, Go to the left child of 15.
° 4— 10 1s checked with root 10 (Found)
Find Min :

e This operation returns the position of the smallest element in the tree.

e To perform FindMin, start at the root and go left as long as there is

a left child. The stopping point is the smallest element.

Recursive routine to find minimum
Node* findMin(Node* root)

{

while (root && root->left |= NULL)
|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

root = root->left;

return root;

Example : -
Root T 10 10
() (9 ONO
(a) T! =NULL and T — left!'=NULL, (b) T!' =NULL and T — left!=NULL,
Traverse left Traverse left
e JO
(c) Since T — left 1s Null, return T as a munumum element.
FindMax

FindMax routine return the position of largest elements in the tree. To perform
a FindMax, start at the root and go right as long as there is a right child. The
stopping point is the largest element.
Recursive routine to find maximum

Node* findMax(Node* root)

{
__|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

while (root && root->right '= NULL)
root = root->right;

return root;

b
Example :-
Root T
5
(a) T! = NULL and T — Right!=NULL, (b) T! =NULL and T — Right!=NULL,

Traverse Right Traverse Right

(c) Since T—> Rught 1s NULL, return T as a Maximum element.

Delete :

Deletion operation is the complex operation in the Binary search tree. To delete
an element, consider the following three possibilities.

CASE 1: Node to be deleted is a leaf node (i.e) No children.

CASE 2: Node with one child.

CASE 3: Node with two children.

CASE 1 Node with no children (Leaf node)

If the node is a leaf node, it can be deleted immediately.

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

24CS402- DATA STRUCTURES USING C++

Delete - 8

After the deletion

CASE 2 : - Node with one child

If the node has one child, it can be deleted by adjusting its parent pointer that
points to its child node.

To Delete 5

before deletion After deletion

To delete 5, the pointer currently poimnting the node 5 1s now made to its child node 6.

Case 3: Node with two children

It is difficult to delete a node which has two children. The general strategy is
to replace the data of the node to be deleted with its smallest data of the

right subtree and recursively delete that node.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

24CS402- DATA STRUCTURES USING C++

Example 1 :
To Delete S :

* The minimum element at the right subtree 1s 7.

o * Now the value 7 1s replaced in the position of 5.

o e * Since the position of 7 1s the leaf node delete
immediately.

After deleting the node

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

24CS402- DATA STRUCTURES USING C++

Example 2 —To Delete 25

* The mmimum element

at the right subtree of 25 is 30

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

* The mumumum value 30 1s replaced in the position of 25

* Since thus node has one chuld, the pointer currently
pomnting to thas node 1s made to pomnts to its chald node 32

Binary Search Tree after deleting 25

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 11

Routine for deletion from BST Node*
deleteNode(Node* root, int key)
{

if (root == NULL)

return root;

if (key < root->data)

root->left = deleteNode(root->left, key);

else if (key > root->data)

root->right = deleteNode(root->right, key);

else

{
// Node with one or no child
if (root->left == NULL)

Node* temp = root->right;
free(root);
return temp;

b
else if (root->right == NULL)

Node* temp = root->left;
free(root);

return temp;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 12

