UNIT -II

COMPLEX INTEGRATION

LINE INTEGRAL AND CONTOUR INTEGRAL

If f(z) is a continuous function of the complex variable z = x + iy and C is any continuous curve connecting two points A and B on the z – plane then the complex line integral of f(z) along C from A to B is denoted by $\int_C f(z)dz$

When C is simple closed curve, then the complex integral is also called as a contour integral and is denoted as $\oint_C f(z)dz$. The curve C is always take in the anticlockwise direction.

Note: If the direction of C is reversed (clockwise), the integral changes its sign

$$(ie)\oint_C f(z)dz = -\oint f(z)dz$$

Standard theorems:

- 1. Cauchy's Integral theorem (or) Cauchy's Theorem (or) Cauchy's Fundamental Theorem Statement: If f(z) is analytic and its derivative f'(z) is continuous at all points inside and on a simple closed curve C then $\oint_C f(z) dz = 0$
- 2. Extension of Cauchy's integral theorem (or) Cauchy's theorem for multiply connected Region Statement: If f(z) is analytic at all points inside and on a multiply connected region whose outer boundary is C and inner boundaries are $C_1, C_2, ..., C_n$ then

$$\int_{c} f(z)dz = \int_{c} f(z)dz + \int_{c_{2}} f(z)dz + \dots + \int_{c_{n}} f(z)dz$$

3. Cauchy's integral formula

Statement: If f(z) is analytic inside and on a simple closed curve C of a simply connected region R and if 'a' is any point interior to C, then

$$f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - a} dz$$
(OR)

$$\int_{c} \frac{f(x)}{z - a} dz = 2\pi i f(a),$$

the integration around C being taken in the positive direction.

4. Cauchy's Integral formula for derivatives

Statement: If f(z) is analytic inside and on a simple closed curve C of a simply connected Region R and if 'a' is any point interior to C, then

$$\int_{c} \frac{f(z)}{(z-a)^2} dz = 2\pi i f'(a)$$

$$\int_C \frac{f(z)}{(z-a)^3} dz = 2\pi i f''(a)$$

In general,
$$\int_c \frac{f(z)}{(z-a)^n} dz = 2\pi i f^{(n-1)}(a)$$

Problems based on Cauchy's Integral Theorem

Example: 4.1 Evaluate $\int_{0}^{3+i} z^{2} dz$ along the line joining the points (0,0) and (3,1)

Solution:

Given
$$\int_0^{3+i} z^2 dz$$

Let
$$z = x + iy$$

Here z = 0 corresponds to (0, 0) and z = 3 + i corresponds to (3, 1)

The equation of the line joining (0, 0) and (3, 1) is

$$y = \frac{x}{3} \Rightarrow x = 3y$$

Now
$$z^2 dz = (x + iy)^2 (dx + idy)$$

$$= [x^2 - y^2 + i2xy][dx + idy]$$

$$= [(x^2 - y^2) + i2xy][dx + idy]$$

$$= [(x^2 - y^2)dx - 2xydy] + i[2xydx + (x^2 - y^2)dy]$$

Since
$$x = 3y \Rightarrow dx = 3dy$$

$$z^2 dz = [8y^2(3dy) - 6y^2 dy] + i[18y^2 dy + 8y^2 dy]$$
$$= 18y^2 dy + i26y^2 dy$$

$$\therefore \int_0^{3+i} z^2 dz = \int_0^{1} [18y^2 + i26y^2] dy$$
$$= \left[18 \frac{y^2}{3} + i 26 \frac{y^3}{3} \right]_0^{1}$$
$$= 6 + i \frac{26}{3}$$

Example: 4.2 Evaluate $\int_0^{2+i} (x^2 - iy) dz$

Solution:

Let
$$z = x + iy$$

Here z = 0 corresponds to (0, 0) and z = 2 + i corresponds to (2, 1)

Now
$$(x^2 - iy)dz = (x^2 - iy)(dx + idy)$$

= $x^2dx + y dy + i(x^2dy - y dx)$

Along the path $y = x^2 \Rightarrow dy = 2xdx$

$$(x^2 - iy)dz = (x^2dx + 2x^3dx) + i(2x^3dx - x^2dx)$$

$$\int_0^{2+i} (x^2 - iy) dz = \int_0^2 (x^2 + 2x^3) dx + i(2x^3 - x^2) dx$$
$$= \left[\frac{x^3}{3} + \frac{2x^4}{4} \right]_0^2 + i \left[\frac{2x^4}{4} = \frac{x^3}{3} \right]_0^2$$
$$= \left(\frac{8}{3} + \frac{16}{2} \right) + i \left(\frac{16}{2} - \frac{8}{3} \right)$$

$$=\frac{32}{3}+i\frac{16}{3}$$

Example: 4.3 Evaluate $\int_c^{\infty} e^{\frac{1}{z}} dz$, where C is |z| = 2

Solution:

Let $f(z) = e^{\frac{1}{z}}$ clearly f(z) is analytic inside and on C.

Hence, by Cauchy's integral theorem we get $\int_c^{\infty} e^{\frac{1}{z}} dz = 0$

Example: 4.4 Evaluate $\int_c z^2 e^{\frac{1}{z}} dz$, where C is |z| = 1

Solution:

Given
$$\int_c z^2 e^{1/z} dz$$

= $\int_c \frac{z^2}{e^{-1/z}} dz$

$$Dr = 0 \implies z = 0$$
, We get $e^{-\frac{1}{0}} = e^{-\infty} = 0$

z = 0 lies inside |z| = 1.

Cauchy's Integral formula is

$$\int_{c} z^{2} e^{1/z} dz = 2\pi i f(0) = 0$$

Example: 4.5 Evaluate $\int_c \frac{1}{2z-3} dz$ where C is |z| = 1

Solution:

Given
$$\int_{c}^{\infty} \frac{1}{2z-3} dz$$

$$Dr = 0 \implies 2z - 3 = 0, \implies z = \frac{3}{2}$$

Given C is |z| = 1

$$\Rightarrow |z| = \left| \frac{3}{2} \right| = \frac{3}{2} > 1$$

$$\therefore z = \frac{3}{2} \text{ lies outside } C$$

: By Cauchy's Integral theorem,
$$\int_c \frac{1}{2z-3} dz = 0$$

Example: 4.6 Evaluate $\int_c \frac{dz}{z+4}$ where C is |z|=2

Solution:

Given
$$\int_C \frac{dz}{z+4}$$

$$Dr = 0 \implies z + 4 = 0 \implies z = -4$$

Given C is
$$|z| = 2$$

$$\Rightarrow |z| = |-4| = 4 > 2$$

$$\therefore z = -4$$
 lies outside C .

∴ By Cauchy's Integral Theorem,
$$\int_{c} \frac{dz}{z+4} = 0$$

Example: 4.7 Evaluate $\int_{c} \frac{e^{2z}}{z^2+1} dz$, where C is $|z| = \frac{1}{2}$

Solution:

Given
$$\int_{c} \frac{e^{2z}}{z^2+1} dz$$

$$Dr = 0 \implies z^2 + 1 = 0 \implies z = +i$$

Given C is
$$|z| = \frac{1}{2}$$

$$\Rightarrow |z| = |\pm i| = 1 > \frac{1}{2}$$

: Clearly both the points $z = \pm i$ lies outside C.

$$\therefore$$
 By Cauchy's Integral Theorem, $\int_{C} \frac{e^{2z}}{z^2+1} dz = 0$

Example: 4.8 Using Cauchy's integral formula Evaluate $\int_c \frac{z+1}{(z-3)(z-1)} dz$, where C is |z|=2

Solution:

Given
$$\int_{c} \frac{z+1}{(z-3)(z-1)} dz$$

$$Dr = 0 \implies z = 3, 1$$

Given C is
$$|z| = 2$$

 \therefore Clearly z = 1 lies inside C and z = 3 lies outside C

$$\int_{c} \frac{z+1}{(z-3)(z-1)} dz = \int_{c} \frac{(z+1)/(z-3)}{(z-1)} dz$$

∴ By Cauchy's Integral Theorem

$$\int_{C} \frac{(z+1)/(z-3)}{(z-1)} dz = 2\pi i f(1) \qquad \text{Where } f(z) = \frac{z+1}{z-3} \Rightarrow f(1) = \frac{2}{-2}$$
$$= 2\pi i (-1) = -2\pi i$$

Example: 4.9 Using Cauchy's integral formula, evaluate $\int_c \frac{\sin z^2 + \cos z^2}{(z-2)(z-3)} dz$ where C is the circle

$$|z| = 4.$$

Solution:

Given
$$\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$$

$$Dr = 0 \implies z = 2,3$$

Given C is
$$|z| = 4$$

:. Clearly z = 2 and 3 lies inside C.

Consider,
$$\frac{1}{(z-2)(z-3)} = \frac{A}{z-2} + \frac{B}{z-3}$$

 $\Rightarrow 1 = A(z-3) + B(Z=2)$

Put
$$z = -3 \Rightarrow 1 = B$$

Put
$$z = 2 \implies -1 = A$$

$$\therefore \frac{1}{(z-2)(z-3)} = -\frac{1}{z-2} + \frac{1}{z-3}$$

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)(z-3)} dz = -\int \frac{\sin \pi z^{2} + \cos \pi z^{2}}{z-2} dz + \int \frac{\sin \pi z^{2} + \cos \pi z^{2}}{z-3} dz$$

$$= -2\pi i f(2) + 2\pi i f(3) \qquad \text{Where } f(z) = \sin(\pi z^{2}) + \cos \pi z^{2}$$

$$= -2\pi i (1) + 2\pi i (-1) \qquad f(2) = \sin 4\pi + \cos 4\pi = 1$$

Example: 4.10 Evaluate $\int_{c} \frac{z+4}{z^2+2z+5}$ Where C is the circle (i)|z+1+i|=2 (ii)|z+1-i|=2 (iii)|z|=1

Solution:

Given
$$\int_{c} \frac{z+4}{z^{2}+2z+5} dz$$

 $Dr = 0 \Rightarrow z^{2} + 2z + 5 = 0$
 $\Rightarrow z = \frac{-2 \pm \sqrt{4-20}}{2}$
 $\Rightarrow z = -1 \pm 2i$
 $\therefore \int_{c} \frac{z+4}{z^{2}+2z+5} dz = \int_{c} \frac{(z+4) dz}{[z-(-1+2i)[z-(-1-2i)]}$

(i) |z + 1 + i| = 2 is the circle

When
$$z = -1 + 2i$$
, $|-1 + 2i + 1 + i| = |3i| > 2$ lies outside C.

When
$$z = -1 - 2i$$
, $|-1 - 2i + 1 + i| = |-i| < 2$ lies inside C.

∴ By Cauchy's Integral formula

$$\int_{C} \frac{[(z+1)/(z-(-1+2i)]}{[z-(-1-2i)]} dz = 2\pi i f(-1-2i) \qquad \text{Where } f(z) = \frac{z+4}{[z-(-1+2i)]}$$

$$= 2\pi i \left[\frac{3-2i}{-4i} \right] \qquad f(-1-2i) = \frac{-1-2i+4}{-1-2i+1-2i} = \frac{3-2i}{-4i}$$

$$= \frac{\pi}{2} (2i-3)$$

(ii) |z + 1 - i| = 2 is the circle

When
$$z = -1 + 2i$$
, $|-1 + 2i + 1 - i| = |i| < 2$ lies inside C

When
$$z = -1 - 2i$$
, $|-1 - 2i + 1 - i| = |-3i| > 2$ lies outside C

: By Cauchy's Integral formula

$$\int_{C} \frac{(z+1)/[z-(-1-2i)]}{[z-(-1+2i)]} dz = 2\pi i f(-1+2i) \qquad \text{Where } f(z) = \frac{z+4}{z-(-1-2i)}$$

$$= 2\pi i \frac{[3+2i]}{4i} \qquad \qquad f(-1+2i) = \frac{-1+2i+4}{-1+2i+1+2i} = \frac{3+2i}{4i}$$

$$= \frac{\pi}{2} (3+2i)$$

(iii)|z| = 1 is the circle

When
$$z = -1 + 2i$$
, $1 - 1 + 2i = \sqrt{5} > 1$ lies outside C

When
$$z = -1 - 2i$$
, $1 - 1 - 2i$ = $\sqrt{5} > 1$ lies outside C

: By Cauchy's Integral theorem

$$\int_{C} \frac{z+4}{z^{2}+2z+5} dz = 0$$

Example: 4.11 Using Cauchy's integral formula, evaluate $\int_c \frac{z+1}{z^2+2z+4} dz$ where C is the circle |z+1+i|=2

Solution:

Given
$$\int_{c} \frac{z+1}{z^{2}+2z+4} dz$$

$$Dr = 0 \Rightarrow z^{2} + 2z + 4 = 0$$

$$\Rightarrow z = \frac{-2\pm\sqrt{4-16}}{2}$$

$$\Rightarrow z = -1 \pm i\sqrt{3}$$

$$\therefore \int_{c} \frac{z+1}{z^{2}+2z+4} dz = \int_{c} \frac{(z+1)dz}{[z-(-1+i\sqrt{3})][z-(-1-i\sqrt{3})]}$$

Given *C* is |z + 1 + i| = 2

When
$$z = -1 - i\sqrt{3}$$
, $|-1 - i\sqrt{3} + 1 + i| = |(1 - \sqrt{3}i)| < 2$ lies inside C.

When
$$z = -1 + i\sqrt{3}$$
, $\left| -1 + i\sqrt{3} + 1 + i \right| = |i + \sqrt{3}i| > 2$ lies outside C.

∴ By Cauchy's Integral Formula

$$\int_{C} \frac{(z+1)/[z-(-1+i\sqrt{3})]}{[z-(-1-i\sqrt{3})]} dz = 2\pi i \ f(-1-i\sqrt{3})$$

$$= 2\pi i \ \left(\frac{1}{2}\right) = \pi i$$

$$f(-1-i\sqrt{3}) = \frac{z+1}{z-(-1+i\sqrt{3})}$$

$$f(-1-i\sqrt{3}) = \frac{-1-i\sqrt{3}+1}{-1-i\sqrt{3}+1-i\sqrt{3}} = \frac{\sqrt{3}i}{-2i\sqrt{3}} = \frac{1}{2}$$

$$\therefore \int_{C} \frac{z+1}{z^{2}+2z+4} dz = \pi i$$

Example: 4.12 Evaluate $\int_{c} \frac{z^{2}+1}{z^{2}-1} dz$ where C is the circle (i)|z-1|=1 (ii)|z+1|=1 (iii)|z-i|=1

Solution:

Given
$$\int_{c} \frac{z^{2+1}}{z^{2}-1} dz = \int_{c} \frac{z^{2}+1}{(z+1)(z-1)} dz$$

$$Dr = 0 \Longrightarrow z = 1, -1$$

(i) (z-1) = 1 is the circle

When
$$z = 1$$
, $|1 - 1| = 0 < 1$ lies inside C

When
$$z = -1$$
, $|-1 - 1| = 2 > 1$ lies outside C

∴ By Cauchy's Integral formula

$$\int_{c} \frac{z^{2}+1}{(z+1)(z-1)} dz = \int_{c} \frac{(z^{2}+1)/z+1}{(z-1)} dz$$

$$= 2\pi i f(1) \qquad \text{where } f(z) = \frac{z^{2}+1}{z+1} \Rightarrow f(1) = 1$$

$$= 2\pi i (1)$$

$$= 2\pi i$$

(ii)|z+1|=1 is the circle

When
$$z = 1$$
, $|1 + 1| = 2 > 1$ lies outside C

When
$$z = -1$$
, $|-1 + 1| = 0 < 1$ lies inside C

∴ By Cauchy's Integral formula

$$\int_{c} \frac{(z^{2}+1)/(z-1)}{z+1} dz = 2\pi i f(-1) \qquad \text{where } f(z) = \frac{z^{2}+1}{z-1} \Rightarrow f(-1) = -1$$
$$= 2\pi i (-1) = -2\pi i$$

(iii) |z - i| = 1 is the circle

When
$$z = 1$$
, $|1 - i| = \sqrt{2} > 1$ lies outside C

When z = -1, $|-1 - i| = \sqrt{2} > 1$ lies outside C

∴ By Cauchy's Integral Formula

$$\int_{c} \frac{(z^{2}+1)}{(z+1)(z-1)} dz = 0$$

Problems based on Cauchy's Integral Formula for derivatives

Example: 4.13 If $f(a) = \int_c \frac{3z^2 + 7z + 1}{z - a} dz$ where C is the circle $x^2 + y^2 = 4$ find the values of

$$f(3), f(1), f'(1-i)$$
 and $f''(1-i)$

Solution:

Given
$$f(a) = \int_c \frac{3z^2 + 7z + 1}{z - a} dz$$

To find:
$$f(3) = \int_{c}^{\infty} \frac{3z^2 + 7z + 1}{z - 3} dz$$

$$Dr = 0 \Longrightarrow z = 3$$

Hence z = 3 lies outside the circle $x^2 + y^2 = 4$

By Cauchy's Integral theorem

$$\int_{c} \frac{3x^2 + 7z + 1}{z - 3} dz = 0$$

To find:
$$f(1) = \int_{c}^{\infty} \frac{3z^2 + 7z + 1}{z - 1} dz$$

$$Dr = 0 \implies z = 1$$

Clearly z = 1 lies inside the circle $x^2 + y^2 = 4$

∴ By Cauchy's Integral formula

$$\int_{C} \frac{3z^{2}+7z+1}{z-1} dz = 2\pi i f(1) \qquad \text{Where } f(z) = 3z^{2} + 7z + 1 \Rightarrow f(1) = 11$$

$$= 2\pi i (11)$$

$$= 22\pi i$$

To find:
$$f'(1-i) = \int_{c} \frac{3z^2 + 7z + 1}{z - (1-i)} dz$$

$$Dr = 0 \implies z = 1 - i$$

and the point z = 1 - i lies inside the circle $x^2 + y^2 = 4$

∴ By Cauchy's Integral formula

$$f'(1-i) = 2\pi i \varphi'(1-i)$$
 Where $\varphi(z) = 3z^2 + 7z + 1$
 $= 2\pi i [6(1-i) + 7]$ $\Rightarrow \varphi'(z) = 6z + 7$
 $= 2\pi i [13 - 6i]$ $\Rightarrow \varphi'(1-i) = 6(1-i) + 7$
 $= 2\pi i [13 - 6i]$

To find:
$$f''(1-i) = \int_c \frac{3z^2+7z+1}{z-(1-i)} dz$$

Cleary and the point z = 1 - i lies inside the circle $x^2 + y^2 = 4$

∴ By Cauchy's Integral formula

$$f'(1-i) = 2\pi i \varphi''(1-i)$$
 Where $\varphi(z) = 3z^2 + 7z + 1$

$$= 2\pi i [6]$$
 $\varphi''(z) = 6z + 7 \Rightarrow \varphi''(z) = 6$
= $12\pi i$

Example: 4.14 Using Cauchy's Integral formula evaluate $\int_c^{\infty} \frac{zdz}{(z-1)(z-2)^2}$ where C is the circle

$$|z-2|=\frac{1}{2}$$

Solution:

Given
$$\int_C \frac{zdz}{(z-1)(z-2)^2}$$

 $Dr = 0 \implies z = 1$ is a pole of order 1, z = 2 is a pole of order 2.

Given C is $|z-2| = \frac{1}{2}$

When z = 1, $|1 - 2| = 1 > \frac{1}{2}$ lies outside C.

When z = 2, $|2 - 2| = 0 < \frac{1}{2}$ lies inside C.

∴ By Cauchy's Integral formula

$$\int_{c} \frac{z/z-1}{(z-2)^{2}} dz = 2\pi i f'(2) \qquad \text{Where } f(z) = \frac{z}{z-1}$$

$$= 2\pi i (-1) \qquad f'(z) = \frac{(z-1)1-z(1)}{(z-1)^{2}} \Rightarrow f'(2) = -1$$

$$= -2\pi i$$

Example: 4.15 Evaluate $\int_c \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$ where C is the circle |z| = 1

Solution:

Given
$$\int_{c} \frac{\sin^2 z}{(z - \frac{\pi}{6})^3} dz$$

 $Dr = 0 \Rightarrow z = \frac{\pi}{6}$ is a pole of order 3.

Give C is |z| = 1.

Clearly $z = \frac{\pi}{6}$ lies inside the circle |z| = 1

∴ By Cauchy's Integral formula

$$\int_{c} \frac{\sin^{2}z}{(z-\frac{\pi}{6})^{3}} dz = \frac{2\pi i}{2!} f''(\pi/6) \qquad \text{Where } f(z) = \sin^{2}z$$

$$= \frac{2\pi i}{2!} (1) \qquad f'(z) = 2\sin z \cos z = \sin 2z$$

$$= \pi i \qquad f''(z) = \cos 2z(2) \Rightarrow f''\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right)$$

$$= 2\cos\frac{\pi}{3} = 2\left(\frac{1}{2}\right) = 1$$

Example: 4.16 Evaluate $\int_c \frac{z}{(z-1)^3} dz$ where C is the circle |z|=2, using Cauchy's Integral formula Solution:

Given
$$\int_{c} \frac{z}{(z-1)^3} dz$$

 $Dr = 0 \Rightarrow z = 1$ is a pole of order 3.

Given C is |z| = 2.

Clearly z = 1 lies inside the circle C

∴ By Cauchy's Integral formula

$$\int_{c} \frac{\sin^{2} z}{(z-1)^{3}} dz = \frac{2\pi i}{2!} f''(1) \qquad \text{Where } f(z) = z \Rightarrow f'(z) = 1$$

$$= \frac{2\pi i}{2!} (0) \qquad \Rightarrow f''(z) = 0 \Rightarrow f''(1) = 0$$

$$= 0$$

Example: 4.17 Evaluate $\int_c \frac{z^2}{(2z-1)^2} dz$ where C is the circle |z|=1

Solution:

Given
$$\int_c \frac{z^2}{(2z-1)^2} dz$$

$$Dr = 0 \Rightarrow 2z = 0 \Rightarrow z = \frac{1}{2}$$
 is a pole of order 2.

Given C is |z| = 1.

Clearly $z = \frac{1}{2}$ lies inside the circle C

∴ By Cauchy's Integral formula

$$\int_{c} \frac{z^{2}}{2^{2}(z-\frac{1}{2})^{2}} dz = \frac{1}{4} \int_{c} \frac{z^{2}}{\left(z-\frac{1}{2}\right)^{2}} dz \qquad \text{Where } f(z) = z^{2} \Rightarrow f'(z) = 2z$$

$$= \frac{1}{4} \left(2\pi i f'\left(\frac{1}{2}\right)\right) \qquad \Rightarrow f'\left(\frac{1}{2}\right) = 1$$

$$= \frac{1}{2}\pi i (1)$$

$$= \frac{\pi i}{2}$$

Exercise: 4.1

Evaluate the following using Cauchy's Integral formula

1. $\int_C \frac{z^2}{z^2+9} dz$ where C is $ z-1 = \frac{3}{2}$	Ans: 0
2. $\int_C \frac{7z-1}{z^2-3z-4}$ where C is the ellipse $x^2 + 4y^2 = 4$	Ans: $\frac{16\pi i}{5}$
3. $\int_C \frac{z^3 - z}{(z+2)^3} dz$ where C is $ z = 3$	Ans: $12\pi i$
4. $\int_{C} \frac{3z-1}{z^{2}-z} dz$ where <i>C</i> is $ z = \frac{1}{2}$	Ans: 2π <i>i</i>
5. $\int_{C} \frac{12z-7}{(2z+3)(z-1)^3} dz$ where C is the circle $x^2 + 4y^2 = 4$	Ans: 0
6. $\int_C \frac{e^{2z}}{(z+1)(z-2)} dz \text{where } C \text{ is } z = 3$	Ans: $2\pi i (e^4 - e^2)$
7. $\int_C \frac{z+1}{z^4-4z^3+4z^2} dz$ where $C is z-2-i =2$	Ans: πi
8. $\int_C \frac{z}{z^4 - 4z^3 + 4z^2} dz$ where C is $ z - 2 = \frac{1}{2}$	Ans: $4\pi i$
9. $\int_C \frac{z}{(z-2)(z-3)^2} dz$ where C is $ z-3 = \frac{1}{2}$	Ans: $-4\pi i$

10. If $f(a) = \int_c \frac{4z^2 + z + 5}{z - a} dz$ where C is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ find the values of f(1), f(i), f'(1 - i) and f''(1 + i) Ans: $20\pi i$, $2\pi i$ (1 + i), $2\pi i$ (9 - 8i), $8\pi i$