

1.6 The Predicate Calculus

The predicate calculus deals with the study of predicates.

Consider the following statement.

“Ram is a boy”

In the above statement, “is a boy” is the predicate and the name “Ram” is the subject.

If we denote “is a boy” by B and subject “Ram” by r, then the statement “Ram is a boy” can be represented as $B(r)$.

Some examples

1. “ x is a man”

Here, Predicate is “is a man” and it is denoted by M. Subject is “ x ” and it is denoted by x .

Hence the given statement “ x is a man” can be denoted by $M(x)$.

2. “Sam is poor and Ram is intelligent”

The statement “Sam is poor” can be represented by $P(s)$ where P represents predicate “is poor” and s represents subject “Sam”

The statement “Ram is intelligent” can be represented by $I(r)$ where I represents predicate “is intelligent” and r represents subject “Ram”.

Hence the given statement “Sam is poor and Ram is intelligent” can be symbolized as $P(s) \wedge I(r)$.

The Theory of Inference for Predicate Calculus

Universal Specification (UG): $A(y) \Rightarrow (x)A(x)$

Existential Generalization (EG): $A(y) \Rightarrow (\exists x)A(x)$

Universal Specification (US): $(x)A(x) \Rightarrow A(y)$

Existential Specification (ES): $(\exists x)A(x) \Rightarrow A(y)$

Problems:

1. Show that $(x)(H(x) \rightarrow M(x)) \wedge H(s) \Rightarrow M(s)$

Solution:

$\{1\}$	1) $(x)(H(x) \rightarrow M(x))$	Rule P
$\{1\}$	2) $H(s) \rightarrow M(s)$	Rule US
$\{3\}$	3) $H(s)$	Rule P
$\{1, 3\}$	4) $M(s)$	Rule T ($P, P \rightarrow Q \Rightarrow Q$)

2. Show that $(x)(P(x) \rightarrow Q(x)) \wedge (x)(Q(x) \rightarrow R(x)) \Rightarrow (x)(P(x) \rightarrow R(x))$

Solution:

{1}	1) $(x)(P(x) \rightarrow Q(x))$	Rule P
{1}	2) $P(y) \rightarrow Q(y)$	Rule US
{3}	3) $(x)(Q(x) \rightarrow R(x))$	Rule P
{1, 3}	4) $Q(y) \rightarrow R(y)$	Rule US
{1, 3}	5) $P(y) \rightarrow R(y)$	Rule T ($P \rightarrow Q, Q \rightarrow R \Rightarrow P \rightarrow R$)
{1, 3}	6) $(x)(P(x) \rightarrow R(x))$	Rule UG

3. Show that $(\exists x)(P(x) \wedge Q(x)) \Rightarrow (\exists x)P(x) \wedge (\exists x)Q(x)$

Solution:

{1}	1) $(\exists x)(P(x) \wedge Q(x))$	Rule P
{1}	2) $P(y) \wedge Q(y)$	Rule ES
{3}	3) $P(y)$	Rule T ($P \wedge Q \Rightarrow P$)
{1, 3}	4) $Q(y)$	Rule T ($P \wedge Q \Rightarrow P$)
{1, 3}	5) $(\exists x)P(x)$	Rule EG
{1, 3}	6) $(\exists x)Q(x)$	Rule EG
{1}	7) $(\exists x)P(x) \wedge (\exists x)Q(x)$	Rule T($P, Q \Rightarrow P \wedge Q$)

4. Show that $(x)(P(x) \vee Q(x)) \Rightarrow (x)P(x) \vee (\exists x)Q(x)$

Solution:

We shall use the indirect method of proof.

Method of contradiction:

Assume $\neg((x)P(x) \vee (\exists x)Q(x))$ as an additional premises.

{1}	1) $\neg((x)P(x) \vee (\exists x)Q(x))$	Assumed Premises
{1}	2) $(\exists x)\neg P(x) \wedge (\exists x)Q(x)$	Rule T (D'Morgan's law)
{1}	3) $(\exists x)\neg P(x)$	Rule T ($P \wedge Q \Rightarrow P$)
{1}	4) $(x)Q(x)$	Rule T ($P \wedge Q \Rightarrow P$)
{1}	5) $\neg P(y)$	Rule ES
{1}	6) $\neg Q(y)$	Rule US
{1}	7) $\neg P(y) \wedge \neg Q(y)$	Rule T($P, Q \Rightarrow P \wedge Q$)
{1}	8) $\neg(P(y) \vee Q(y))$	Rule T (D'Morgan's law)
{1}	9) $(x)(P(x) \vee Q(x))$	Rule P
{1}	10) $P(y) \vee Q(y)$	Rule US
{1}	11) $(P(y) \vee Q(y)) \wedge \neg(P(y) \vee Q(y))$	Rule T($P, Q \Rightarrow P \wedge Q$)

which is nothing but false value.

5. Show that $(x)(P(x) \rightarrow Q(x)) \Rightarrow (x)P(x) \rightarrow (x)Q(x)$

Solution:

Assume $\neg((x)P(x) \rightarrow (x)Q(x))$

{1}	1) $\neg((x)P(x) \rightarrow (x)Q(x))$	Assumed Premises
{1}	2) $(x)P(x) \wedge \neg(x)Q(x)$	Rule T ($P \rightarrow Q \Rightarrow \neg P \vee Q$)
{1}	3) $(x)P(x)$	Rule T ($P \wedge Q \Rightarrow P$)
{1}	4) $\neg((x)Q(x))$	Rule T ($P \wedge Q \Rightarrow P$)
{1}	5) $(\exists x)\neg Q(x)$	Rule T(Taking \neg)
{1}	6) $P(y)$	Rule US
{1}	7) $\neg Q(y)$	Rule ES
{1}	8) $P(y) \wedge \neg Q(y)$	Rule T ($P, Q \Rightarrow P \wedge Q$)
{9}	9) $\neg(P(y) \rightarrow Q(y))$	Rule T($(P \wedge \neg Q) \Leftrightarrow \neg(P \rightarrow Q)$)
{9}	10) $(\exists x)\neg(P(x) \rightarrow Q(x))$	Rule EG
{1, 9}	11) $\neg((x)P(x) \rightarrow (x)Q(x))$	Rule T(Taking \neg)