
24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

1.4 ARRAYS

Definition

An array is a collection of elements of the same data type stored in

contiguous memory locations and accessed using a common name along with

an index or subscript.

Declaration of Arrays

Declaring an array requires specifying the data type, array name, and size.

The size determines how many elements the array can store.

Syntax

 data_type array_name[size];

Example

int numbers[10];

float salary[5];

char name[20];

Features of Arrays:

1. All elements in an array must be of the same type (e.g., all int, all float).

2. Common name refer to the array by a single identifier (e.g., a).

3. Each element is accessed by its position, called an index or subscript, usually

starting from 0 in most programming languages.

4. Memory allocation is done at compile time (for static arrays).

5. Elements are stored one after another in continuous memory, which allows

efficient access.

6. Fast access using the indexing operator ([]).

Example:

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

 int a[5]; → creates an integer array of size 5.

 1.4.1 Types of Arrays

a) One-Dimensional Array

Stores data in a single row (linear structure). A one-dimensional array

represents a simple list of values arranged in a single row. It is the simplest form of

an array and is commonly used for storing lists like marks, salaries, or

temperatures.

Example:

 int a[5];

b) Two-Dimensional Array

A two-dimensional array stores data in the form of rows and columns, similar

to a matrix. This type of array is useful for applications such as tables, grids, and

mathematical matrix operations. Represented as rows and columns (matrix

format).

Example:

 int a[3][3];

c) Multi-Dimensional Array

Array with more than two dimensions. A multi-dimensional array extends the

concept of a matrix into three or more dimensions, enabling representation of

complex structures such as 3D data blocks or multi-level tables.

Example:

 int a[3][3][3];

Initialization of Arrays

a) Compile-Time Initialization

Arrays can be initialized during declaration by assigning values inside braces. If

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

all values are specified, the array gets fully initialized

 int a[5] = {10, 20, 30, 40, 50};

b) Partial Initialization

If only some values are provided, the remaining elements automatically

receive zero as their value. Remaining values become 0.

 int a[5] = {10, 20};

c) Automatic Size Calculation

C++ also allows automatic size calculation when the number of values is

known, in which case the compiler determines the appropriate array size.

 int a[] = {1, 2, 3, 4};

Accessing Array Elements

Each element of an array is accessed using its index inside square brackets.

Indexing begins at zero, meaning the first element is accessed using a[0].

Elements are accessed by index:

 a[0], a[1], a[2] … a[n-1]

Example:

 cout << a[2];

Input and Output of Array Elements

Input

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

for(i=0; i<5; i++)

 cin >> a[i];

Output

for(i=0; i<5; i++)

 cout << a[i] << " ";

2D Array – Declaration & Initialization

A two-dimensional array is declared by providing two sizes: one for rows and

another for columns. It can be initialized using nested braces, where each inner

brace represents a row of the matrix. Elements are accessed using two indices—one

specifying the row and the other specifying the column.

Declaration

int m[3][3];

Initialization

 int m[2][3] = {

 {1, 2, 3},

 {4, 5, 6}

 };

Accessing 2D elements

 cout << m[0][1]; // prints 2

Memory Representation

 Each element occupies memory based on its type (e.g., int = 4 bytes).

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

 Index calculation:

Address of a[i] = base_address + (i * size_of_each_element)

Example (1D Array)

#include <iostream.h>

#include <conio.h>

class ArrayDemo

{

public:

 int a[5]; // Array as a class member

 void read() // Member function to read array elements

 {

 cout << "Enter 5 elements:\n";

 for (int i = 0; i < 5; i++)

 cin >> a[i];

 }

 void display() // Member function to display array elements

 {

 for (int i = 0; i < 5; i++)

 cout << a[i] << " ";

 }

};

void main()

{

 clrscr();

 ArrayDemo d; // Object name starts with first letter of class → d

 d.read(); // Read array elements from user

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

 d.display(); // Display array elements

 getch();

}

Output:-

Enter 5 elements:

10 20 30 40 50

10 20 30 40 50

 The array a[5] is declared as a data member of the class ArrayDemo.

 An object d of class ArrayDemo is created.

 d.read() is called to accept array elements from the user.

 The display() function is a member function that prints all array elements.

 An object d is created, and the function is called using the object to show

array values.

 Thus, the program shows how arrays can be used inside a class and how

member functions can access and manipulate class data.

Advantages of Arrays

 Arrays allow storing multiple values of the same data type in an organized

way.

 They provide fast and direct access to elements using their index.

 Arrays make operations like sorting and searching more efficient.

 Their contiguous memory allocation improves cache performance and speeds

up execution.

 Disadvantages of Arrays

 Arrays have a fixed size, so they cannot grow or shrink during program

execution.

 Memory may be wasted if the declared array size is larger than the actual

data stored.

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

 Inserting or deleting elements is slow because it requires shifting other

elements.

 Arrays cannot store elements of different data types together.

Applications of Arrays

1. Storing Collections of Data

 Arrays are used to store multiple values of the same type under a

single name., such as student marks, employee salaries, or daily

temperatures.

2. Matrix Representation in Mathematics

 Arrays (especially 2D arrays) are used to represent matrices for

mathematical, engineering, and scientific calculations.

3. Lookup Tables

 Arrays store fixed sets of values that can be accessed quickly, helping

in fast search operations and decision-making in programs.

4. Image Storage and Processing

 Digital images are represented using 2D arrays, where each element

represents a pixel value (color or intensity).

5. String Handling

 Character arrays are used to store strings in languages like C, where

each character is stored in a continuous memory block.

6. Data Sorting and Searching

 Arrays are commonly used to apply algorithms like bubble sort, binary

search, and selection sort.

7. Implementing Other Data Structures

 Arrays form the base for many advanced data structures such as stacks,

queues, heaps, and hash tables.

