
24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2.4 INTERPROCESS COMMUNICATION (IPC)

The way in which the process communicate with each other is known as interprocess

communication.

Processes executing concurrently in the operating system may be either independent

processes or cooperating processes.

Cooperating processes require an interprocess communication (IPC) mechanism that will

allow them to exchange data and information.

Independent processes:

 A process is independent if it cannot affect or be affected by the other processes executing

in the system.

 Any process that does not share data with any other process is independent.

Cooperating processes:

 A process is cooperating if it can affect or be affected by the other processes executing in

the system.

 Any process that shares data with other processes is a cooperating process.

Need:

a) Information sharing.

 Users may be interested in the same piece of information.

 Environment should allow concurrent access to such information.

b) Computation speedup.

If we want a particular task to run faster, break it into subtasks, each of which will be

executing in parallel with the others.

c) Modularity.

Construct the system in a modular fashion i.e.) dividing the system functions into separate

processes or threads.

d) Convenience.

 Even an individual user may work on many tasks at the same time

 Example: a user may be editing, listening to music, and compiling in parallel.

There are fundamental models of interprocess communication:

1) Shared memory

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

2) Pipe

3) Semaphore

1) Shared memory Systems

A region(portion) of memory that is shared by cooperating processes is established.

Processes can then exchange information by reading and writing data to the shared region.

A shared-memory region resides in the address space of the process creating the shared-memory

segment.

 System calls are required only to establish shared memory regions.

 Once shared memory is established, all accesses are treated as routine memory accesses,

and no assistance from the kernel is required.

 Process ensures that they are not writing to the same location simultaneously.

Example: producer – consumer problem,

A producer process produces information that is consumed by a consumer process.

Shared memory is one of the solution to the producer – consumer problem.

 To allow producer and consumer processes to run concurrently.

 A buffer memory is used as shared region, where producer fills the item and consumer

use/empties it.

 A producer can produce one item while the consumer is consuming another item.

 The consumer does not try to consume an item that has not yet been produced

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Advantage:

 faster than message passing, no kernel assistance is required

 Disadvantage:

 Data is shared by all users

 Shared memory suffers from cache coherency issues, which arise

because shared data migrate among the several caches

 Types of Buffer.

i) Unbounded buffer

 There is no limit on the size of the buffer.

 The consumer may have to wait for new items, but the producer can always produce

new items.

ii) Bounded buffer

 The buffer is of fixed buffer size.

 In this case, the consumer waits if the buffer is empty, and the producer wait if the

buffer is full.

2. PIPES

Pipes are a fundamental Inter-Process Communication (IPC) mechanism in operating

systems. A pipe is a unidirectional communication channel used for interprocess communication

between related processes (like parent and child). They act as a conduit(channel) for data transfer

between processes, allowing the output of one process to serve as the input for another.

Pipes are a type of IPC (Inter-Process Communication) technique that allows two or more

processes to communicate with each other by creating a unidirectional or bidirectional channel

between them. A pipe is a virtual communication channel that allows data to be transferred

between processes, either one-way or two-way. Pipes can be implemented using system calls in

most modern operating systems, including Linux, macOS, and Windows.

The pipe() system call in operating systems facilitates interprocess communication by

creating a unidirectional communication channel between two processes. It allows one process

to write data into the pipe, while another process can read from it. This mechanism is particularly

useful for achieving coordination and data transfer between processes, such as in pipelines or filters.

Example: producer- consumer problem

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Key concepts

 Unidirectional flow: Data flows in one direction only. A process writes to one end of the pipe (the

write-end), and another process reads from the other end (the read-end).

 Producer-consumer model: This is the standard communication pattern for pipes, where one

process produces data and another consumes it.

 Byte stream: Data in a pipe is treated as a stream of bytes, meaning there's no inherent knowledge

of message boundaries.

 FIFO (First-In, First-Out): Pipes operate on a FIFO principle, like a queue.

 Virtual file: The operating system manages a pipe as a "virtual file" within main memory, providing

a temporary storage space for data.

 File descriptors: When a pipe is created, the system call returns two file descriptors: one for reading

from the pipe and one for writing to it.

 fd is an integer array of size 2, which will hold two file descriptors after the pipe is created:

 fd[0] - This file descriptor is for reading from the pipe (the read end).

 fd[1] - This file descriptor is for writing to the pipe (the write end).

Types of pipes

Two types of pipe

a) Ordinary Pipes

b) Named Pipes

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

a) Ordinary Pipes (unnamed pipe/Anonymous Pipes):

 Ordinary pipes are a fundamental mechanism in operating systems, for enabling

communication between processes. They are also known as anonymous pipes or unnamed pipes.

 Ordinary pipes allow simple, one-way communication between parent and child

processes.

 They are widely used in Linux systems for data exchange in pipelines and process

communication.

 Easy to implement and understand, but limited to related processes and one direction.

Mechanism:

 The pipe is created before fork(), so both parent and child share the pipe.

 It has two ends:

o fd[0] → Read end

o fd[1] → Write end

 One process writes data into the pipe, the other reads from it.

 It is stored temporarily in a kernel buffer.

Unidirectional communication

 Ordinary pipes primarily facilitate unidirectional communication, meaning data flows in one

direction only.

 One end of the pipe is designated for writing (producer), and the other end is for reading (consumer).

 Ordinary pipes are commonly used for communication between related processes, primarily

a parent process and its child processes created via the fork() system call.

 The parent process typically creates the pipe, and the child process inherits the file

descriptors for the pipe's read and write ends

Ordinary pipes allow two processes to communicate in producer–consumer fashion:

 the producer writes to one end of the pipe (the write end)

 and the consumer reads from the other end (the read end).

Ordinary pipes are unidirectional, allowing only one-way communication

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Advantages

 Simplicity: A relatively straightforward way for processes to communicate.

 Efficiency: Can transfer data quickly with minimal overhead.

 Reliability: Can detect transmission errors and ensure correct data delivery.

Disadvantages

 Unidirectional: Ordinary pipes are unidirectional by default; two-way communication requires two

pipes.

 Limited Capacity: Pipes have a fixed-size buffer, which can limit the amount of data transferred

at once.

 No Broadcasting: Cannot broadcast data to multiple receivers.

 Requires Related Processes (Ordinary Pipes): Ordinary pipes require a parent-child relationship

between processes.

 No Message Boundaries: Data is treated as a stream of bytes, without knowledge of message

boundaries.

Example:

 The command ls -l | grep "txt" uses a pipe to send the output of ls -l (list files and

directories) as input to grep "txt" (filter lines containing "txt"), effectively listing only files

and directories with the "txt" extension.

b) Named Pipes (FIFOs):

 Communication can be bidirectional, and no parent–child relationship is required.

Once a named pipe is established, several processes can use it for Communication.

 Named Pipe (also called FIFO) is a special type of file used for unidirectional

interprocess communication (IPC). Unlike ordinary (unnamed) pipes.

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 Which are used to establish two-way communications between two unrelated

programs

 Multiple processes can access this special file for reading and writing like any

ordinary file.

 To achieve bidirectional communication, you would typically need to set up two

separate ordinary pipes, one for each direction

Mechanism:

1. A FIFO special file is created using mkfifo() or the shell command mkfifo.

2. One process opens it for writing, the other for reading.

3. The kernel buffers data written to the FIFO until it is read.

4. Data flows like a first-in, first-out queue.

Advantages of Named Pipes (FIFOs)

Advantage Description

1.Inter-process

Communication (IPC)

Named pipes allow communication between unrelated processes,

unlike anonymous pipes which work only for parent-child processes.

2. Simplicity
Easier to implement and use compared to more complex IPC

mechanisms like sockets or shared memory.

3.Bidirectional

Communication

With two pipes (one for each direction), full-duplex communication

can be achieved.

4. File System Presence
They appear as a special file in the file system, allowing easy access

via file paths and standard file I/O operations.

5. Blocking Behavior
The blocking nature (writer waits for reader and vice versa) can be

used to synchronize processes easily.

6. Language Agnostic
Can be used across programs written in different programming

languages (as long as they support file I/O).

7. Security Control
File system permissions can be applied to control access to the named

pipe.

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Disadvantages of Named Pipes (FIFOs)

Disadvantage Description

1. Limited to Same Host
Named pipes cannot be used over a network, unlike sockets.

Communication is restricted to the same machine.

2. No Persistence
Data is not stored permanently; it exists only while being transferred

and read. Once read, it's gone.

3. Buffer Size Limits
Pipes have a limited buffer size. If the buffer fills and the reader is slow

or absent, the writer blocks.

4. One-Way by Default
Named pipes are unidirectional by default. Full-duplex communication

requires setting up two separate pipes.

5.Synchronization

Overhead

Requires manual coordination between reader and writer processes to

avoid deadlocks or data inconsistency.

6. No Random Access
Pipes are stream-based — you cannot seek or jump to a specific

position in the data.

7.Performance

Overhead

Compared to shared memory, pipes can be slower due to kernel

involvement in every read/write operation.

System calls in Unix/Linux

 pipe() : Creates a pipe and returns two file descriptors, one for the read end and one for the

write end.

 fork() : Creates a child process, allowing both parent and child to access the pipe through

inherited file descriptors.

 close() : Closes a file descriptor, releasing the pipe resource when all ends are closed.

 read() : Reads data from the pipe's read end.

 write() : Writes data to the pipe's write end.

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Working of pipes:

1. Creation: A process creates a pipe using the pipe() system call. This establishes a read-end

and a write-end, represented by file descriptors.

2. Communication Setup: For successful communication, the writing process should close the

read end of the pipe, and the reading process should close the write end.

3. Data Flow: The writing process uses the write() system call to send data to the pipe's write-

end. The reading process uses the read() system call to receive data from the pipe's read-end.

4. Blocking: If a process attempts to read from an empty pipe, it will be blocked (suspended) until

data is written to the pipe. Conversely, if the pipe's buffer becomes full, a writing process will be

blocked until space becomes available.

5. Closing the file descriptor: Both the open file descriptors must be closed at the end of the

process to execute the program successfully. Zero is returned on success by the close() system call.

3. SEMAPHORES

Definition

A semaphore is an integer variable that controls access to a resource. It uses two atomic operations:

 wait() (also called P or down): Decrements the semaphore. If the value becomes negative,

the process is blocked.

 signal() (also called V or up): Increments the semaphore. If other processes are waiting, one

may be unblocked.

Semaphores are used to control access to a limited number of resources. They maintain a

counter representing the number of available resources. Threads decrement the counter when

acquiring a resource and increment it when releasing. If the counter is zero, threads attempting to

acquire a resource are blocked until a resource becomes available.

Mechanism:

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

A semaphore uses an integer counter:

 wait (P operation): Decreases the semaphore value.

o If the value is > 0, the process continues.

o If the value is 0, the process is blocked.

 signal (V operation): Increases the semaphore value.

o Wakes up one of the blocked processes (if any).

Two standard operation

a) Wait() :

 used to test the semaphore’s value.

 Decrements the semaphore's value.

 If the value becomes negative, the process is blocked.

 Denoted using P symbol

Definition of wait():

wait(P)

{

 while (P <= 0); // busy wait process itself blocked

 P--;

}

b)Signal() :

 used to increment the semaphore’s value.

 It gives signal to the waiting process to access it. (if the value is

negative)

 It activates a process blocked on the semaphore

 Denoted using V symbol

Definition of signal():

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

signal(V)

{

 V++;

}

wait and signal operations is to control the number of processes that can access a critical

section of code or a shared resource i.e., if one process modifies the semaphore value, no other

process can modify the semaphore value at the same time.

Example:

When a common resource to be access is given to the critical section. When a process is

wants to use the resource it will give wait() here semaphore value is decremented. The process start

using the resources. After using the resource signal() is called which increment the semaphore value.

So that the process waiting for the resource can access that resources.

Advantage:

 Semaphores help prevent data corruption.

 Semaphores ensure proper synchronization between concurrent processes

Types of Semaphores:

 Binary Semaphore:

 This is also known as a mutex lock.

 locks that provide mutual exclusion.

 It two values 0 and 1.

 Its value is initialized to 1.

 It is used to implement the solution of critical section problems with multiple processes

and a single resource.

 Counting Semaphore:

 Used to control access to a resource that has multiple instances.

 Initialized to the number of resources available.

 Its value can range over an unrestricted domain.

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Semaphore Implementation

 Busy waiting problem is overcome by modify the definition of the wait() and signal()

operations

 When a process executes the wait() operation and if the semaphore value is not positive, it

must wait. (rather than busy in waiting)

 The process can block itself.

 The block operation places a process into a waiting queue associated with the semaphore,

and the state of the process is switched to the waiting state.

 Then control is transferred to the CPU scheduler, which selects another process to execute.

Definition of wait() semaphore :

wait(semaphore *P)

{

block();

}

Definition of signal() semaphore:

signal(semaphore *V)

{

wakeup(V);

}

 Blocked process should be restarted.

 The process is restarted by a wakeup() operation when some other process executes a

signal() operation.

 wakeup() which changes the process from the waiting state to the ready state.

 The process is then placed in the ready queue.

 Integer value of the semaphore is the list of processes.

24AI301 - OPERATING SYSTEMS & CLOUD BASICS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 When a process wait, it is added to the list.

 A signal() operation removes one waiting process from the list awakens that process using

wakeup(V) operation.

System Calls Used in Linux (System V Semaphores):

Linux supports two main semaphore APIs:

1. System V Semaphores

o semget() – Create a semaphore set or access an existing one.

o semop() – Perform operations like wait (P) or signal (V).

o semctl() – Control operations (remove, set values, etc.)

o Suitable for complex multi-process synchronization.

2. POSIX Semaphores

 Created using sem_open() (named) or sem_init() (unnamed)

 Operated with sem_wait() and sem_post()

 Easier to use and more portable

Importance of semaphores:

 Process Synchronization: Ensuring multiple processes safely share resources.

 Mutual Exclusion: Allowing only one process access to a critical section.

 Resource Management: Controlling access to a finite number of resources.

 Deadlock Prevention: Regulating the order processes acquire resources.

 Solving Classic Synchronization Problems: Used for problems like the Producer-

Consumer and Dining Philosophers problems.

