UNIT- I COMPLEX DIFFERENTIATION ANALYTIC FUNCTIONS- Cauchy – Riemann equations

1.1 INTRODUCTION

The theory of functions of a complex variable is the most important in solving a large number of Engineering and Science problems. Many complicated intergrals of real function are solved with the help of a complex variable.

1.1 (a) Complex Variable

x + iy is a complex variable and it is denoted by z.

(i.e.)z = x + iy where $i = \sqrt{-1}$

1.1 (b) Function of a complex Variable

If z = x + iy and w = u + iv are two complex variables, and if for each value of z in a given region R of complex plane there corresponds one or more values of w is said to be a function z and is denoted by w = f(z) = f(x + iy) = u(x, y) + iv(x, y) where u(x, y) and v(x, y) are real functions of the real variables x and y.

Note:

(i) single-valued function

If for each value of z in R there is correspondingly only one value of w, then w is called a single valued function of z.

Example: $w = z^2, w = \frac{1}{z}$

		<i>w</i> = 2	Z ² RVE	ΟΡΤΙΜΙΖ	E OUTS	SPREAD	$w = \frac{1}{z}$		
Z	1	2	-2	3	Z	1	2	-2	3
W	1	4	4	9	W	1	$\frac{1}{2}$	$\frac{1}{-2}$	$\frac{1}{3}$

(ii) Multiple – valued function

If there is more than one value of w corresponding to a given value of z then w is called multiple – valued function.

Example: $w = z^{1/2}$

$$w = z^{1/2}$$

Z	4	9	1
W	-2,2	3, -3	1, -1

(iii) The distance between two points z and z_o is $|z - z_o|$

(iv)The circle C of radius δ with centre at the point z_o can be represented by $|z - z_o| = \delta$.

(v) $|z - z_o| < \delta$ represents the interior of the circle excluding its circumference.

(vi) $|z - z_o| \le \delta$ represents the interior of the circle including its circumference.

(vii) $|z - z_o| > \delta$ represents the exterior of the circle.

(viii) A circle of radius 1 with centre at origin can be represented by |z| = 1

1.1 (c) Neighbourhood of a point z_o

Neighbourhood of a point z_o , we mean a sufficiently small circular region [excluding the points on the boundary] with centre at z_o .

$$(i.e.) |z - z_0| < \delta$$

Here, δ is an arbitrary small positive number.

1.1 (d) Limit of a Function

Let f(z) be a single valued function defined at all points in some neighbourhood of point z_0 .

Then the limit of f(z) as z approaches $z_o is w_o$.

$$(i.e.) \lim_{z \to z_0} f(z) = w_0$$

1.1 (e) Continuity

If f(z) is said to continuous at $z = z_o$ then

$$\lim_{z\to z_o} f(z) = f(z_o)$$

If two functions are continuous at a point their sum, difference and product are also continuous at that point, their quotient is also continuous at any such point $[dr \neq 0]$

Example: 1.1 State the basic difference between the limit of a function of a real variable and that of a complex variable. [A.U M/J 2012]

Solution:

In real variable, $x \to x_0$ implies that x approaches x_0 along the X-axis (or) a line parallel to the

X-axis.

In complex variables, $z \rightarrow z_0$ implies that z approaches z_0 along any path joining the points z and z_0 that lie in the z-plane.

1.1 (f) Differentiability at a point

A function f(z) is said to be differentiable at a point, $z = z_0$ if the limit

$$f(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
 exists.

This limit is called the derivative of f(z) at the point $z = z_0$

If f(z) is differentiable at z_0 , then f(z) is continuous at z_0 . This is the necessary condition for differentiability.

Example: 1.2 If f(z) is differentiable at z_0 , then show that it is continuous at that point. Solution:

As f(z) is differentiable at z_0 , both $f(z_0)$ and $f'(z_0)$ exist finitely.

Now,
$$\lim_{z \to z_0} |f(z) - f(z_0)| = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$
$$= f'(z_0) \cdot 0 = 0$$

Hence, $\lim_{z \to z_o} f(z) = \lim_{z \to z_o} f(z_o) = f(z_o)$

As $f(z_0)$ is a constant.

This is exactly the statement of continuity of f(z) at z_0 .

Example: 1.3 Give an example to show that continuity of a function at a point does not imply the existence of derivative at that point.

Solution:

Consider the function $w = |z|^2 = x^2 + y^2$

This function is continuous at every point in the plane, being a continuous function of two real variables. However, this is not differentiable at any point other than origin.

Example: 1.4 Show that the function f(z) is discontinuous at z = 0, given that f(z) =

$$\frac{2xy^2}{x^2+3y^4}$$
, when $z \neq 0$ and $f(0) = 0$.

Solution:

Given
$$f(z) = \frac{2xy^2}{x^2 + 3y^4}$$

Consider $\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{2x(mx)^2}{x^2 + 3(mx)^4} = \lim_{x \to 0} \left[\frac{2m^2x}{1 + 3m^4x^2} \right] = 0$ $\lim_{\substack{y^2 = x \ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{2x^2}{x^2 + 3x^2} = \lim_{x \to 0} \frac{2x^2}{4x^2} = \frac{2}{4} = \frac{1}{2} \neq 0$ $\therefore f(z) \text{ is discontinuous}$

 $\therefore f(z)$ is discontinuous

Example: 1.5 Show that the function f(z) is discontinuous at the origin (z = 0), given that

$$f(z) = \frac{xy(x-2y)}{x^3+y^3}, \text{ when } z \neq 0$$
$$= 0 \quad \text{, when } z = 0$$

Solution:

Consider
$$\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{x(mx)(x - 2(mx))}{x^3 + (mx)^3}$$
$$= \lim_{x \to 0} \frac{m(1 - 2m)x^3}{(1 + m^3)x^3} = \frac{m(1 - 2m)}{1 + m^3}$$

Thus $\lim_{z\to 0} f(z)$ depends on the value of m and hence does not take a unique value.

 $\therefore \lim_{z \to 0} f(z) \text{ does not exist.}$

 \therefore f(z) is discontinuous at the origin.

1.1 (A) ANALYTIC FUNCTIONS – NECESSARY AND SUFFICIENT CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR CO-ORDINATES

Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

Entire Function: [Integral function]

A function which is analytic everywhere in the finite plane is called an entire function.

An entire function is analytic everywhere except at $z = \infty$.

Example: e^z , sin z, cos z, sinhz, cosh z

1.2 (i) The necessary condition for f = (z) to be analytic. [Cauchy – Riemann

Equations]

The necessary conditions for a complex function f = (z) = u(x, y) + iv(x, y) to be analytic in a region R are $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ i.e., $u_x = v_y$ and $v_x = -u_y$

[OR]

Derive C – R equations as necessary conditions for a function w = f(z) to be analytic. Proof:

Let f(z) = u(x, y) + iv(x, y) be an analytic function at the point z in a region R. Since f(z) is analytic, its derivative f'(z) exists in R

$$f'(z) = \operatorname{Lt} \frac{f(z+\Delta z) - f(z)}{\Delta_z}$$

$$\operatorname{Let} z = x + iy$$

$$\Rightarrow \Delta z = \Delta_x + i\Delta_y$$

$$z + \Delta_z = (x + \Delta_x) + i(y + \Delta_y)$$

$$f(z) = u(x, y) + iv(x, y)$$

$$f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)$$

$$f(z + \Delta z) - f(z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x, y) + iv(x, y)]$$

$$= [u(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) + u(x, y)]$$

v(x,y)]

$$f'(z) = \underset{\Delta z \to 0}{\operatorname{Lt}} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$
$$= \underset{\Delta z \to 0}{\operatorname{Lt}} \frac{u(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - v(x, y)]}{\Delta x + i\Delta y}$$

Case (i)

If $\Delta z \to 0$, firsts we assume that $\Delta y = 0$ and $\Delta x \to 0$. $\therefore f'(z) = \lim_{\Delta x \to 0} \frac{[u(x + \Delta x, y) - u(x, y)] + i[v(x + \Delta x, y) - v(x, y)]}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}$ $= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad \dots (1)$

Case (ii)

If $\Delta z \to 0$ Now, we assume that $\Delta x = 0$ and $\Delta y \to 0$

$$\therefore f'(z) = \underset{\Delta y \to 0}{\operatorname{Lt}} \frac{[u(x, y + \Delta y) - u(x, y)] + i[v(x, y + \Delta y) - v(x, y)]}{i\Delta y}$$
$$= \frac{1}{i} \underset{\Delta y \to 0}{\operatorname{Lt}} \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y} + \underset{\Delta y \to 0}{\operatorname{Lt}} \frac{v(x, y + \Delta y) - v(x, y)}{\Delta y}$$
$$= \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
$$= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \qquad \dots (2)$$

From (1) and (2), we get

$$\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

Equating the real and imaginary parts we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial v}{\partial y}$$
(*i.e.*) $u_x = v_y, \quad v_x = -u_y$

The above equations are known as Cauchy – Riemann equations or C-R equations.

Note: (i) The above conditions are not sufficient for f(z) to be analytic. The sufficient conditions are given in the next theorem.

(ii) Sufficient conditions for f(z) to be analytic.

If the partial derivatives $u_x \,_y v_x$ and v_y are all continuous in D and $u_x \,_y = v_y$ and $u_y = -v_{x'}$ then the function f(z) is analytic in a domain D.

(ii) Polar form of C-R equations

In Cartesian co-ordinates any point z is z = x + iy.

In polar co-ordinates, $z = re^{i\theta}$ where r is the modulus and θ is the argument.

Theorem: If $f(z) = u(r, \theta) + iv(r, \theta)$ is differentiable at $z = re^{i\theta}$, then $u_r = \frac{1}{r}v_{\theta}$, $v_r = \frac{1}{r}v_{\theta}$

$$-\frac{1}{r}u_{\theta}$$
(OR) $\frac{\partial u}{\partial t} = \frac{1}{r}\frac{\partial v}{\partial t}, \quad \frac{\partial v}{\partial t} = \frac{-1}{r}\frac{\partial u}{\partial t}$

OR)
$$\frac{1}{\partial r} = \frac{1}{r} \frac{1}{\partial \theta}, \quad \frac{1}{\partial r} = \frac{1}{r} \frac{1}{\partial \theta}$$

Proof:

Let
$$z = re^{i\theta}$$
 and $w = f(z) = u + iv$
 $(i.e.) u + iv = f(z) = f(re^{i\theta})$
Diff. p.w. r. to r, we get
 $\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = f'(re^{i\theta}) e^{i\theta} \dots (1)$
Diff. p.w. r. to θ , we get
 $\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} = f'(re^{i\theta}) e^{i\theta} \dots (2)$
 $= ri[f'(re^{i\theta}) e^{i\theta}]$
 $= ri[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}]$ by (1)
 $= ri \frac{\partial u}{\partial r} - r \frac{\partial v}{\partial r}$

Equating the real and imaginary parts, we get

$$\frac{\partial u}{\partial \theta} = -i\frac{\partial v}{\partial r}, \quad \frac{\partial v}{\partial \theta} = r\frac{\partial u}{\partial r}$$
$$(i.e.)\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = \frac{-1}{r}\frac{\partial v}{\partial \theta}$$

Problems based on Analytic functions – necessary conditions Cauchy –

Riemann equations

Example: 1.6 Show that the function f(z) = xy + iy is continuous everywhere but not differentiable anywhere.

Solution:

Given f(z) = xy + iy

$$(i.e.) \quad u = xy, v = y$$

x and y are continuous everywhere and consequently u(x, y) = xy and v(x, y) = y are continuous everywhere.

Thus f(z) is continuous everywhere.

But

$$u = xy$$
 $v = y$ $u_x = y$ $v_x = 0$ $u_y = x$ $v_y = 1$ $u_x \neq v_y$ $u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not differentiable anywhere though it is continuous everywhere .

Example: 1.7 Show that the function $f(z) = \overline{z}$ is nowhere differentiable. Solution:

Given
$$f(z) = \overline{z} = x - iy$$

i.e.,
 $u = x$ $v = -y$
 $\frac{\partial u}{\partial x} = 1$ $\frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial y} = 0$ $\frac{\partial v}{\partial y} = -1$
 $\therefore u_x \neq v_y$

C-R equations are not satisfied anywhere.

Hence, $f(z) = \overline{z}$ is not differentiable anywhere (or) nowhere differentiable.

Example: 1.8 Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at z = 0. Solution:

Let
$$z = x + iy$$

 $\overline{z} = x - iy$
 $|z|^2 = z \,\overline{z} = x^2 + y^2$
(*i.e.*) $f(z) = |z|^2 = (x^2 + y^2) + i0$

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

$u = x^2 + y^2$	v= 0
$u_x = 2x$	$v_x = 0$
$u_y = 2y$	$v_y = 0$

So, the C-R equations $u_x = v_y$ and $u_y = -v_x$ are not satisfied everywhere except at z = 0. So, f(z) may be differentiable only at z = 0.

Now, $u_x = 2x$, $u_y = 2y$, $v_x = 0$ and $v_y = 0$ are continuous everywhere and in particular at (0,0).

Hence, the sufficient conditions for differentiability are satisfied by f(z) at z = 0.

So, f(z) is differentiable at z = 0 only and is not analytic there.

Inverse function

Let w = f(z) be a function of z and z = F(w) be its inverse function.

Then the function w = f(z) will cease to be analytic at $\frac{dz}{dw} = 0$ and z = F(w) will be so, at point where $\frac{dw}{dz} = 0$.

Example: 1.9 Show that $f(z) = \log z$ analytic everywhere except at the origin and find its derivatives.

Solution:

Let
$$z = re^{i\theta}$$

 $f(z) = \log z$
 $= \log(re^{i\theta}) = \log r + \log(e^{i\theta}) = \log r + i\theta$

But, at the origin, r = 0. Thus, at the origin, Note : $e^{-\infty} = 0$

$$f(z) = log0 + i\theta = -\infty + i\theta$$

So, f(z) is not defined at the origin and hence is not

differentiable there.

At points other than the origin, we have

$u(r,\theta) = \log r$	$v(r,\theta)=\theta$
$u_r = \frac{1}{r}$	$v_r = 0$
$u_{ heta}=0$	$v_{ heta} = 1$

 $\log e^{-\infty} = \log 0; -\infty = \log 0$

So, logz satisfies the C–R equations.

Further $\frac{1}{z}$ is not continuous at z = 0.

So, u_r , u_θ , v_r , v_θ are continuous everywhere except at z = 0. Thus log z satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$f'(z) = \frac{u_r + iv_r}{e^{i\theta}} = \frac{\left(\frac{1}{r}\right) + i(0)}{e^{i\theta}} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Note: $f(z) = u + iv \Rightarrow f(re^{i\theta}) = u + iv$

Differentiate w.r.to 'r', we get

$$(i.e.) e^{i\theta} f'(re^{i\theta}) = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$
 NEER

Example: 1.10 Check whether $w = \overline{z}$ is analytics everywhere. Solution:

Let
$$w = f(z) = \overline{z}$$

 $u+iv = x - iy$
 $u = x$ $v = -y$
 $u_x = 1$ $v_x = 0$
 $u_y = 0$ $v_y = -1$

 $u_x \neq v_y$ at any point p(x,y)

Hence, C-R equations are not satisfied.

: The function f(z) is nowhere analytic.

Example: 1.11 Test the analyticity of the function w = sin z. Solution:

> Let w = f(z) = sinz u + iv = sin(x + iy) u + iv = sin x cos iy + cos x sin iyu + iv = sin x cosh y + i cos x sin hy

Equating real and imaginary parts, we get

$u = \sin x \cosh y$	$v = \cos x \sinh y$
$u_x = \cos x \cosh y$	$v_x = -\sin x \sinh y$

$u_y = \sin x \sinh y$	$v_y = \cos x \cosh y$
$\therefore u_x = v_y$ and	$u_{y} = -v_{x}$

C – R equations are satisfied.

Also the four partial derivatives are continuous.

Hence, the function is analytic.

Example: 1.12 Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not. Solution:

Let
$$f(z) = 2xy + i(x^2 - y^2)$$

(i.e.)
 $u = 2xy$ $v = x^2 - y^2$
 $\frac{\partial u}{\partial x} = 2y$ $\frac{\partial v}{\partial x} = 2x$
 $\frac{\partial u}{\partial y} = 2x$ $\frac{\partial v}{\partial y} = -2y$

 $u_x \neq v_y$ and $u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not an analytic function.

Example: 1.13 Prove that $f(z) = \cosh z$ is an analytic function and find its derivative. Solution:

Given $f(z) = \cosh z = \cos(iz) = \cos[i(x + iy)]$ = $\cos(ix - y) = \cos ix \cos y + \sin(ix) \sin y$ $u + iv = \cosh x \cos y + i \sinh x \sin y$

$u = \cosh x \cos y$	$v = \sinh x \sin y$
$u_x = \sinh x \cos y$	$v_x = \cosh x \sin y$
$u_y = -\cosh x \sin y$	$v_y = \sinh x \cos y$

 $\therefore u_x, u_y, v_x$ and v_y exist and are

continuous.

 $u_x = v_y$ and $u_y = -v_x$

C-R equations are satisfied.

 \therefore f(z) is analytic everywhere.

Now, $f'(z) = u_x + iv_x$ = $\sinh x \cos y + i \cosh x \sin y$ = $\sinh(x + iy) = \sinh z$

Example: 1.14 If w = f(z) is analytic, prove that $\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$ where $z = x + i\frac{\partial w}{\partial y}$

iy, and prove that $\frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$.

Solution:

Let w = u(x, y) + iv(x, y)

As f(z) is analytic, we have $u_x = v_y$, $u_y = -v_x$

Now,
$$\frac{dw}{dz} = f'(z) = u_x + iv_x = v_y - iu_y = i(u_y + iv_y)$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = -i\left[\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right]$$

$$= \frac{\partial}{\partial x}(u + iv) = -i\frac{\partial}{\partial y}(u + iv)$$

$$= \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$$
We know that, $\frac{\partial w}{\partial z} = 0$
 $\therefore \frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$
Also $\frac{\partial^2 w}{\partial \overline{z} \partial z} = 0$

Example: 1.15 Prove that every analytic function w = u(x, y) + iv(x, y)can be expressed as a function of z alone.

Proof:

Let
$$z = x + iy$$
 and $\overline{z} = x - iy$
 $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z + \overline{z}}{2i}$

Hence, u and v and also w may be considered as a function of z and \overline{z}

Consider
$$\frac{\partial w}{\partial \overline{z}} = \frac{\partial u}{\partial \overline{z}} + i \frac{\partial v}{\partial \overline{z}}$$

$$= \left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \overline{z}} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \overline{z}}\right) + \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \overline{z}}\right)$$

$$= \left(\frac{1}{2}u_x - \frac{1}{2i}u_y\right) + i\left(\frac{1}{2}v_x - \frac{1}{2i}v_y\right)$$

$$= \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$

$$= 0 \text{ by C-R equations as } w \text{ is analytic.}$$

This means that w is independent of \overline{z}

(*i.e.*) *w* is a function of *z* alone.

This means that if w = u(x, y) + iv(x, y) is analytic, it can be rewritten as a function of (x + iy).

Equivalently a function of \overline{z} cannot be an analytic function of z.

Example: 1.16 Find the constants a, b, c if f(z) = (x + ay) + i(bx + cy) is analytic. Solution:

$$f(z) = u(x, y) + iv(x, y)$$

= $(x + ay) + i(bx + cy)$
$$u = x + ay \qquad v = bx + cy$$

$$u_x = 1 \qquad v_x = b$$

$$u_y = a \qquad v_y = c$$

Given $f(z)$ is analytic

$$a_x = c_y$$
 and $a_y = c_y$
 $1 = c$ and $a = -b$

Example: 1.17 Examine whether the following function is analytic or not $f(z) = e^{-x}(\cos y - i \sin y)$.

Solution:

Given
$$f(z) = e^{-x}(\cos y - i \sin y)$$

 $\Rightarrow u + iv = e^{-x} \cos y - ie^{-x} \sin y$
 $u = e^{-x} \cos y$ $v = -e^{-x} \sin y$
 $u_x = -e^{-x} \cos y$ $v_x = e^{-x} \sin y$
 $u_y = -e^{-x} \sin y$ $v_y = -e^{-x} \cos y$

Here, $u_x = v_y$ and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 \Rightarrow *f*(*z*) is analytic.

Example: 1.18 Test whether the function $f(z) = \frac{1}{2}\log(x^2 + y^2 + \tan^{-1}\left(\frac{y}{x}\right))$ is analytic or not.

Solution:

Given
$$f(z) = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$$

(*i.e.*) $u + iv = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

$$u = \frac{1}{2}\log(x^{2} + y^{2})$$

$$v = \tan^{-1}\left(\frac{y}{x}\right)$$

$$u_{x} = \frac{1}{2}\frac{1}{x^{2} + y^{2}}(2x)$$

$$v_{x} = \frac{1}{1 + \frac{y^{2}}{x^{2}}}\left[-\frac{y}{x^{2}}\right]$$

$$= \frac{x}{x^{2} + y^{2}}$$

$$u_{y} = \frac{1}{2}\frac{1}{x^{2} + y^{2}}(2y)$$

$$= \frac{y}{x^{2} + y^{2}}$$

$$v_{y} = \frac{1}{1 + \frac{y^{2}}{x^{2}}}\left[\frac{1}{x}\right]$$

$$= \frac{x}{x^{2} + y^{2}}$$

Here, $u_x = v_y$ and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 $\Rightarrow f(z)$ is analytic.

Example: 1.19 Find where each of the following functions ceases to be analytic.

(i)
$$\frac{z}{(z^2-1)}$$
 (ii) $\frac{z+i}{(z-i)^2}$

Solution:

(i) Let
$$f(z) = \frac{z}{(z^2-1)}$$

 $f'(z) = \frac{(z^2-1)(1)-z(2z)}{(z^2-1)^2} = \frac{-(z^2+1)}{(z^2-1)^2}$
 $f(z)$ is not analytic, where $f'(z)$ does not exist.
(*i.e.*) $f'(z) \to \infty$
(*i.e.*) $(z^2 - 1)^2 = 0$
(*i.e.*) $z^2 - 1 = 0$
 $z = 1$
 $z = \pm 1$

 $\therefore f(z)$ is not analytic at the points $z = \pm 1$

(ii) Let
$$f(z) = \frac{z+i}{(z-i)^2}$$

 $f'(z) = \frac{(z-i)^2(1)(z+i)[2(z-i)]}{(z-i)^4} = \frac{(z+3i)}{(z-i)^3}$
 $f'(z) \to \infty, \text{ at } z = i$

 $\therefore f(z)$ is not analytic at z = i.