24CS402- DATA STRUCTURES USING C++

PRIORITY QUEUE (HEAPS) - BINARY HEAP

e In a priority queue, an element with high priority is served
before an element with low priority.

e If two elements have the same priority, they are served according to
their order in the queue.
Two types of priority queue
1. Max Priority Queue
2. Min Priority Queue
Max Priority Queue
In Max Priority Queue, elements are inserted in the order in which they
arrive they queue and always maximum value is removed first from the
queue.
E.x : insert in order 8, 3, 2, 5 removed in the order 8, 5, 3, 2
Min Priority Queue
Min Priority Queue is similar to Max priority queue except removing

maximum elements first, we remove min. element first in min priority queue

BINARY HEAP

e The efficient way of implementing priority queue is Binary Heap.

e Binary heap is merely referred as Heaps

Heap have two properties namely
e Structure property

e Heap order property.

Structure Property

e A heap should be complete binary tree, which is a completely filled
binary tree with the possible exception of the bottom level, which is
filled from left to right.

e A complete binary tree of height H has between 2" and 2"+! -1 nodes.

e For example, if the height is 3. Then the number of nodes will be between 8

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

and 15. (ie) (23 and 24-1).

e For any element in array position i, the left child is in position 2i, the
right child is in position 2i + 1, and the parentis in i/2.

e As it is represented as array it doesn’t require pointers and
also the operations required to traverse the tree are extremely
simple and fast.

e But the only disadvantage is to specify the maximum heap size in advance.

A complete Binary Tree

11 |12)13 | 14 | 15| 16 | 17 | 18 | 19

Array implementation of complete binary tree

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

Not a Complete Binary Tree
Heap Order Property

e In a heap, for every node X, the key in the parent of X is smaller
than (or equal to) the key in X.

e This property allows the deletemin operations to be performed
quickly has the minimum element can always be found at the root.

e Thus, we get the FindMin operation in constant time.

(a) Binary tree with

structure and heap
order property.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

(b) Binary tree with

structure but violating

heap order property

Basic Heap Operations
To perform the insert and DeleteMin operations ensure that the heap
order property is maintained.
Insert Operation
e To insert an element X into the heap, we create a hole in the next
available location, otherwise the tree will not be complete.
e If X can be placed in the hole without violating heap order, then
place the element X there itself.
e Otherwise, we slide the element that is in the hole’s parent node
into the hole, thus bubbling the hole up toward the root.
e This process continues until X can be placed in the hole.

e This general strategy is known as Percolate up, in which the new
element is percolated up the heap until the correct location is found.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

Example :
To Insert 10 :

(a) A hole is created at the next location

(b) Percolate the hole up to satisfy heap order

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

(d) Percolate the hole up to satisfy heap order

In Fig (d) the value 10 is placed in its correct location.

DeleteMin
e DeleteMin Operation is deleting the minimum element from the Heap.

e In Binary heap the minimum element is found in the root.
e When this minimum is removed, a hole is created at the root.
e Since the heap becomes one smaller, makes the last element X in

the heap to move somewhere in the heap.

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

e If X can be placed in hole without violating heaporder property place it.

e Otherwise, we slide the smaller of the hole’s children into the hole,
thus pushing the hole down one level.

e We repeat until X can be placed in the hole.

e This general strategy is known as percolate down.

Example: To delete the minimums element 10

Delete minimum element 10, creates the hole at the root.

The last element ‘30’ must be moved somewhere in the heap

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

24CS402- DATA STRUCTURES USING C++

‘The hole's smallest children (20) is placed
into the hole by pushing the hole one
level down.

Thelast element '30’ :is placed in the correct hole.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 8

24CS402- DATA STRUCTURES USING C++

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 9

24CS402- DATA STRUCTURES USING C++

#include <iostream.h>
#include <conio.h>

#define MAX 20

int heap[MAX];
int size = 0;

// Function to heapify

void heapify(int n, int i) {
int largest = i;
intl=2*i+1;
intr=2*i+ 2;

if (I < n && heap[l] > heap[largest])
largest = [;

if (r < n && heap[r] > heap[largest])
largest = r;

if (largest '=1i) {
int temp = heapl[i];
heap[i] = heap[largest];
heap[largest] = temp;

heapify(n, largest);
}
}

// Function to insert an element
void insert(int value) {
heapl[size] = value;
size++;

for (inti = (size/2)-1;i>=0;i--){
heapify(size, i);
b
b

// Function to delete a given element
void deleteNode(int value) {
inti;
for (i=0; i < size; i++) {
if (heap[i] == value)
break;
|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 10

24CS402- DATA STRUCTURES USING C++

b

if (i == size) {
cout << "Element not found\n";
return;

b

heap[i] = heap[size - 1];
size--;

for (i=(size/2)-1;i>=0;i--){
heapify(size, i);
b
b

// Function to display heap
void display() {
for (inti = 0; i < size; i++) {
cout << heapl[i] <<"";
ks
ks

void main() {
clrscr();

insert(3);
insert(4);
insert(9);
insert(5);
insert(2);

cout << "Max-Heap array: ";
display();

deleteNode(4);

cout << "\nAfter deleting an element: ";
display();

getch();
b
Output:
Max-Heap array: 954 3 2
After deleting an element: 952 3

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 11

24CS402- DATA STRUCTURES USING C++

APPLICATIONS OF HEAP

e To quickly find the smallest and largest element from a
collection of items or array.

e In the implementation of Priority queue in graph algorithms
like Dijkstra’s algorithm (shortest path), Prim’s algorithm
(minimum spanning tree) and Huffman encoding (data

compression).

e In order to overcome the Worst Case Complexity of Quick Sort
algorithm from O(n”~2) to O(nlog(n)) in Heap Sort.

e For finding the order in statistics.

e Systems concerned with security and embedded system such
as Linux Kernel uses Heap Sort because of the O(nlog(n)) .

__|
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 12

