COULOMB'S LAW

Coulomb's law is formulated in 1785 by French colonel, Charles Augustin de Coulomb. It deals with a force exerts on a point charge due to another point charge. Charges are generally measured in coulombs, one coulomb = 6×10^{18} electrons; one electron e = -1.609×10^{-19} .

STATEMENT:

The force between two point charges Q1 and Q 2 is

- Along the line joining them
- Directly proportional to the product Q1Q2 of the charges
- Inversely proportional to the square of the distance R between them.

Mathematically expressed as
$$F = \frac{K Q1 Q2 a_R}{R^2}$$
 (1)

 $K \rightarrow Proportionality constant$, Q1,Q2 \rightarrow charges in coulombs (C),

 $R \rightarrow$ distance in meters (m), $F \rightarrow$ Force in newton (N)

$$K = \frac{1}{4\pi\epsilon_0} = 9 X 10^9 \ m/F$$

 $\epsilon_0 \rightarrow$ Permittivity of free space (in farads per meter)

$$\epsilon_0 = 8.854 \, X 10^{-12} \approx \frac{10^{-9} \, F}{36\pi \, m}$$

Substitute K in equation (1), Equation (1) becomes

$$F = \frac{Q1 Q2 a_R}{4\pi\epsilon_0 R^2} \tag{2}$$

If the point charge Q1 and Q2 have a position vectors \mathbf{r}_1 and \mathbf{r}_2 , then the force $\ F$ is represented as F_{12}

$$F_{12} = \frac{Q1 \ Q2}{4\pi\epsilon_0 R^2} \ a_{R_{12}} \tag{3}$$

Where
$$R_{12} = r_2 - r_1$$
 (4)

$$Magnitude R = |R_{12}| \tag{5}$$

Unit vector
$$a_{R_{12}} = \frac{R_{12}}{R}$$
 (6)

Substitute eqn (6) in eqn (3)

$$F_{12} = \frac{Q1 \, Q2}{4\pi\epsilon_0 R^3} R_{12} \tag{7}$$

Substitute eqn (4) in eqn (7)

$$F_{12} = \frac{Q1 \ Q2(r_2 - r_1)}{4\pi\epsilon_0 |r_2 - r_1|^3} \tag{8}$$

Fig 18: Coulomb vector force on point charges Q1 and Q2

1. The force on Q1 due to Q2 is
$$F_{21} = |F_{12}| a_{R_{21}} = |F_{12}| (-a_{R_{12}})$$

$$F_{21} = -F_{12} \tag{8}$$

$$a_{R_{21}} = -a_{R_{12}}$$

Fig 19: a,b, - Like charges repel; c-Unlike charges attract.

- 2. Like charges repel each other while unlike charges attract.
- 3. The distance R between the charges Q1 and Q2 must be large compared with the dimensions of Q1 and Q2.
- 4. Q1 and Q2 must be static (at rest).
- 5. The signs of Q1 and Q2 must be taken into account in eqn (3).

Force due to N – point charges: (Principle of Super position)

If more than two point (N point) charges Q_1,Q_2,Q_3 , Q_N are located with position vectors $r_1, r_2, r_3, \ldots, r_N$, the force on charge Q located at point r is the vector sum of the forces exerted on q by each of the charges Q_1,Q_2,Q_3 , Q_N .

$$F = \frac{QQ_1(r-r_1)}{4\pi\epsilon_0|r-r_1|^3} + \frac{QQ_2(r-r_2)}{4\pi\epsilon_0|r-r_2|^3} + \dots \frac{QQ_N(r-r_N)}{4\pi\epsilon_0|r-r_N|^3}$$
(9)

The above equation can also be written as

$$F = \frac{Q}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k(r - r_k)}{|r - r_k|^3}$$
 (10)

Electric Field intensity:

The electric field intensity (or electric field strength) E is the force per unit charge when placed in the electric field.

$$E = \lim_{Q \to 0} \frac{F}{Q} \tag{11}$$

$$E = \frac{F}{Q} \tag{12}$$

The electric field intensity E is in the direction of the force F and is measured in newtons/ coulomb or volts / meter. The electric field intensity at point r due to point charge located at r' is obtained from eqn (8) and eqn (12)

$$E = \frac{Q}{4\pi\epsilon_0 R^2} a_R = \frac{Q(r-r')}{4\pi\epsilon_{0|r-r'|^3}}$$
(13)

For N point charges Q_1,Q_2,Q_3 , Q_N are located with position vectors $r_1, r_2, r_3, \dots, r_N$ the electric field intensity at point r is obtained from eqn (10) and (12)

$$E = \frac{Q_1(r-r_1)}{4\pi\epsilon_0|r-r_1|^3} + \frac{Q_2(r-r_2)}{4\pi\epsilon_0|r-r_2|^3} + \dots \frac{Q_N(r-r_N)}{4\pi\epsilon_0|r-r_N|^3}$$
(14)
$$E = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k(r-r_k)}{|r-r_k|^3}$$
(15)

Electric fields due to continuous charge distributions

Point	Line	Surface	volume
charge	charge	charge	charge

Fig 20. Various charge distributions and charge elements

➤ Charge distribution is continuous along a line, surface & volume.

$$dQ \rightarrow \text{charge element}$$

Total charge
$$dQ=\rho_L\,dl$$

$$Q=\int \rho_L\,dl\,\,(line\,charge)$$

$$dQ=\rho_s\,ds\,(Surface\,charge)$$

$$Q=\int_S\,\rho_S\,ds$$

Volume charge

24 E

$$dQ = \rho_v \, dv$$
$$Q = \int_v \, \rho_v \, dv$$

The electric field intensity due to ρ_{L,ρ_s} , ρ_v

$$E = \frac{F}{Q} = \frac{Q (r - r')}{4\pi\varepsilon_0 |r - r'|^3} = \frac{Q a_R}{4\pi\varepsilon_0 R^2}$$

$$E = \frac{\int_L P_L dL}{4\pi\varepsilon_0 R^2} a_R \text{ (Line charge)}$$

$$E = \int_S \frac{P_S dS}{4\pi\varepsilon_0 R^2} a_R \text{ (Surface charge)}$$

$$E = \int_V \frac{P_V dV}{4\pi\varepsilon_0 R^2} a_R \text{ (Volume Charge)}$$

Electric field intensity of Line charge (Finite and infinite Line Charge)

ELECTRO MAGNETIC FIELDS

Fig 21: Evaluation of the E field due to a line charge

Line charge with uniform distribution from A to B along z axis The charge element dQ associated with element dl = dz

Total charge
$$Q = \int_{L} \rho_{L} dL = \int_{zA}^{zB} \rho_{L} dz$$
.....(2)

The electric field intensity E at point P(x, y, z)

$$dl = dz'$$

 $R = (x, y, z) - (0, 0, z')$ $\rho = R \cos \alpha$
 $= xax + yay + (z - z')az$ $z - z' = R \sin \alpha$

(or)
$$R = \rho a \rho + (z - z') a z$$

$$R^2 = |R^2| = x^2 + y^2 + (z - z')^2 = \rho^2 + (z - z')^2$$

$$\frac{a_R}{R^2} = \frac{R}{|R^3|} = \frac{\rho a \rho + (z - z') a z}{|\rho^2 + (z - z')^2|^{3/2}} \qquad \dots (3)$$

$$E = \frac{\int_{L} \rho_{L} dL}{4\pi\varepsilon_{0}R^{2}} a_{R}$$

$$E = \frac{\rho_L}{4\pi\varepsilon_0} \int \frac{\rho a \rho + (z - z') a z}{(\rho^2 + (z - z')^2)^{3/2}} dz' \qquad(4)$$

From fig 21

$$R = \left[\rho^2 + (z - z')^2\right]^{1/2} = \rho \sec \alpha$$

$$z' = OT - \rho \tan \alpha$$

$$\tan \alpha = \frac{z - z'}{\rho}$$

$$- dz' = \rho \sec^2 \alpha \, d\alpha$$

$$dz' = -\rho \sec^2 \alpha \ d\alpha$$

$$(4) \Longrightarrow becomes$$

$$E = \frac{-\rho_L}{4\pi\varepsilon_0} \int_{\alpha_1}^{\alpha_2} \frac{\rho \sec^2 \alpha \left[R \cos \alpha_\rho + R \sin \alpha \, az \right]}{\left(\rho^2 sec^2 \, \alpha \right) R} d\alpha$$

$$E = \frac{-\rho_L}{4\pi\varepsilon_0\rho} \int_{\alpha_1}^{\alpha_2} [\cos\alpha \, \alpha\rho + \sin\alpha \, \alpha z] \, d\alpha$$

$$E = \frac{-\rho_L}{4\pi\varepsilon_0\rho} \left[+ \sin \alpha \, \alpha\rho - \cos \alpha \, \alpha z \right]_{\alpha_1}^{\alpha_2}$$

$$E = \frac{-\rho_L}{4\pi\varepsilon_0\rho} \left[+ \left[\sin \alpha_2 - \sin \alpha_1 \right] a\rho - \left[\cos \alpha_2 - \cos \alpha_1 \right] az \right]$$

Finite line charge

$$E = \frac{\rho_L}{4\pi\varepsilon_0\rho} \left[-[\sin \alpha_2 - \sin \alpha_1] \right] a\rho + \left[\cos \alpha_2 - \cos \alpha_1 \right] az \right]$$

.... (A)

Infinite line charge

Point B is at
$$(0,0,\infty)$$
 and A at $(0,0,-\infty)\alpha_1 = \frac{\pi}{2}\alpha_2 = \frac{-\pi}{2}$

Eqn $(A) \Rightarrow$

$$E = \frac{\rho_L}{4\pi\varepsilon_0\rho} \left[-(-\sin\frac{\pi}{2} - \sin\frac{\pi}{2}) a\rho + 0 \right]$$

$$E = \frac{\rho_L}{4\pi\varepsilon_0\rho} \quad 2a\rho = \frac{\rho_L}{2\pi\varepsilon_0\rho} \quad a\rho \text{ v/m}$$

Electric field intensity of an infinite sheet of charge:

Infinite sheet of charge in xy plane with charge density ρs . Total charge with an elemental area (ds) is

$$dQ = \rho_s. ds$$
 (1)

Integrate eqn (1)

$$Q = \int_{S} \rho_{S} ds \longrightarrow (2)$$

The electric field intensity is expressed in general as

$$E = \frac{Q}{4\pi\varepsilon_0 R^2} a_R$$

(A)

For a surface charge sub (2) in (A)

$$E = \int_{S} \frac{\rho_{S ds}}{4\pi\varepsilon_{0} R^{2}} a_{R}$$
 (3)

Fig22: Evaluation of electric field 'E' due to an infinite sheet of charge.

Find ds. aR and R then substitute in equation (3)

$$R = \rho (-a\rho) + h az$$

$$R = -\rho a\rho + h az$$

$$|R| = \sqrt{\rho^2 + h^2}$$

$$(4)$$

(4a)

The surface is in xy plane and is given as $ds = \rho . d\Phi . d\rho$ (5)

$$a_R = \frac{R}{|R|}$$

(6)

sub eqn (6), (5), (4) and (4a) in eqn (3)

24 EE301

$$E = \int_0^{2\pi} \int_0^\infty \frac{(-\rho a \rho + h \, az)\rho_S}{4\varepsilon_0 \pi (\rho^2 + h^2)(\sqrt{\rho^2 + h^2})} \cdot \rho d\phi \cdot d\rho$$
(7)
$$0 < \Phi < 2\pi, 0 < \rho < \infty$$

E has only 'z' component
$$-\rho a \rho + haz = h az$$
 (7a)

Sub eqn (7a) in (7)

$$= \int_0^{2\pi} \int_0^\infty \frac{\rho_s haz.\rho d\phi.d\rho}{4\pi \, \varepsilon_0 (\rho^2 + h^2) \sqrt{\rho^2 + h^2}}$$

Integrate with respect to Φ

$$= \frac{\rho_s}{4\pi\varepsilon_0} \int_0^\infty \frac{\rho haz.d\rho}{(\rho^2 + h^2)\sqrt{\rho^2 + h^2}} \left[\Phi\right]_0^{2\pi}$$

$$= \frac{\rho_s}{4\pi\varepsilon_0} \int_0^\infty \frac{\rho haz.d\rho}{(\rho^2 + h^2)\sqrt{\rho^2 + h^2}} \left[2\pi - 0\right]$$

$$= \frac{2\pi\rho_s h}{4\pi\varepsilon_0} \int_0^\infty \frac{\rho az.d\rho}{(\rho^2 + h^2)\sqrt{\rho^2 + h^2}}$$

(8)

Assume

$$\rho^2 + h^2 = u^2$$

(9)

Diff. eqn (9)

$$2\rho \cdot d\rho = 2u \cdot du$$
 (9a)

$$\rho \cdot d\rho = u \cdot du \tag{9b}$$

If $\rho = 0$, u = h and $\rho = \infty$, $u = \infty$ (9c)

substitute eqn (9b) and (9c) in eqn (8)

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \int_{h}^{\infty} \frac{u.du.az}{(u^{2})\times\sqrt{u^{2}}}$$

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \int_{h}^{\infty} \frac{u.du.az}{(u^{2})\times u}$$

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \int_{h}^{\infty} u^{-2} du.az$$
(10)

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \left[\frac{u^{-1}}{-1} \right]_{h}^{\infty} \cdot az$$

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \left[\frac{-1}{u} \right]_{h}^{\infty} \cdot az$$

$$= \frac{\rho_{s}h}{2\varepsilon_{0}} \cdot az \left[\frac{-1}{\infty} + \frac{1}{h} \right]$$

$$E = \frac{\rho_{s}h}{2\varepsilon_{0}} \times \frac{1}{h} az = \frac{\rho_{s}az}{2\varepsilon_{0}}$$

$$(11)$$

$$E = \frac{\rho_{s}}{2\varepsilon_{0}} a_{z}$$

E has only 'z' component if charge is in the xy plane equation (11) is valid for h>0, for h<0 az is replaced by -az

Infinite sheet of charge

The electric field due to infinite sheet of charge is everywhere normal to the surface and its magnitude is independent of the distance of a point from plane containing the sheet of charge

$$E = \frac{\rho_s}{2\varepsilon_0} a_n$$

 $a_n \rightarrow$ unit vector normal to the sheet

Electric field due to charged circular ring

Fig:23 The charged circular ring

The charged circular ring of radius ' ρ ' is shown in fig. The ring is placed in xy plane and carrying the charge density is ρ_l c/m [uniformly distributed].

The electric field intensity 'E' is measured at point p which is of distance 'z' from origin.

Consider a small differential length dl on this ring. The total charge on it is

$$dQ = \rho_l dl \qquad \longrightarrow \qquad (1)$$

Integrate eqn (1)

$$Q = \int \rho_l \, dl \tag{1a}$$

The electric field due to line charge is $E = \int \frac{\rho_l \, dl}{4\pi\varepsilon_0 R^2} \cdot \overline{aR} \longrightarrow (2)$

 $R = distance between p and dl , dl in <math>\Phi$ direction

$$dl = \rho d\Phi \qquad \longrightarrow \qquad (3)$$

$$R^2 = \rho^2 + h^2$$

- 1) 'ρ' is in the direction of –aρ radially inwards (-ρar)
- 2) h is in the direction $a\bar{z}$ ie h az

$$\overline{R} = -\rho \text{ a}\rho + \text{h az} \qquad (4)$$

$$|R| = \sqrt{(-\rho)^2 + h^2} = \sqrt{\rho^2 + h^2} \qquad (5)$$

$$aR = \frac{-\rho \text{ a}\rho + \text{h az}}{\sqrt{\rho^2 + \text{h}^2}} \qquad (6)$$

sub eqn (3), (4),(5) and (6) in eqn (2) $0 < \Phi < 2\pi$

$$E = \int_0^{2\pi} \frac{\rho_l \rho d\phi}{4\pi \varepsilon_0 (\rho^2 + h^2)} \times \frac{-\rho a \rho + haz}{\sqrt{\rho^2 + h^2}}$$
(7)

The radial components of 'E' at point 'p' will be symmetrically placed in the xy plane and are cancel each other

Hence the vector
$$\mathbf{R} = -\rho a \rho + h a z$$

$$R = h \text{ az}$$
 (8) [since $-\rho a \rho = 0$]

Eqn (7) is reduced by

$$= \frac{\rho_{l}}{4\pi\varepsilon_{0}} \int_{0}^{2\pi} \frac{\rho h az}{(\rho^{2} + h^{2})^{3/2}} \cdot d\Phi$$

$$= \frac{\rho_{l}}{4\pi\varepsilon_{0}} \frac{\rho h az}{(\rho^{2} + h^{2})^{3/2}} \left[\Phi\right]_{0}^{2\pi}$$

$$= \frac{\rho_{l}}{4\pi\varepsilon_{0}} \frac{\rho h az}{(\rho^{2} + h^{2})^{3/2}} \cdot 2\pi$$

$$E = \frac{\rho_{l}}{2\varepsilon_{0}} \frac{\rho h}{(\rho^{2} + h^{2})^{3/2}} \cdot az \longrightarrow (9)$$