

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

STRUCTURES, UNIONS AND FILE HANDLING IN C

Structure: Declaration, Definition-Array of Structures - Pointer to Structure –Nested Structures-

Union: Defining union, Accessing union members. Files: File Management functions, Random

access in file- Working with Text Files and Binary Files.

5.1 STRUCTURE: DECLARATION, DEFINITION

A structure in C is a derived or user-defined data type. We use the keyword struct to

define a custom data type that groups together the elements of different types. The difference

between an array and a structure is that an array is a homogenous collection of similar types,

whereas a structure can have elements of different types stored adjacently and identified by a name.

We are often required to work with values of different data types having certain

relationships among them. For example, a book is described by

its title (string), author (string), price (double), number of pages (integer), etc. Instead of using

four different variables, these values can be stored in a single struct variable.

a) Declare (Create) a Structure

We can create (declare) a structure by using the "struct" keyword followed by the

structure_tag (structure name) and declare all of the members of the structure inside the curly

braces along with their data types. To define a structure, you must use the struct statement. The

struct statement defines a new data type, with more than one member.

Syntax of Structure Declaration

The format (syntax) to declare a structure is as follows −

https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_data_types.htm

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

The structure tag is optional and each member definition is a normal variable definition, such as

"int i;" or "float f;" or any other valid variable definition.

At the end of the structure's definition, before the final semicolon, you can specify one or more

structure variables but it is optional.

Example

In the following example we are declaring a structure for Book to store the details of a Book −

Here, we declared the structure variable book1 at the end of the structure definition. However, you

can do it separately in a different statement.

b) Structure Variable Declaration

To access and manipulate the members of the structure, you need to declare its variable first.

To declare a structure variable, write the structure name along with the "struct" keyword followed

by the name of the structure variable. This structure variable will be used to access and manipulate

the structure members.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Example

The following statement demonstrates how to declare (create) a structure variable

struct book book1;

Usually, a structure is declared before the first function is defined in the program, after

the include statements. That way, the derived type can be used for declaring its variable inside any

function.

c) Structure Initialization

The initialization of a struct variable is done by placing the value of each element inside curly

brackets.

Example

The following statement demonstrates the initialization of structure

struct book book1 = {"Learn C", "Dennis Ritchie", 675.50, 325};

d) Accessing the Structure Members

To access the members of a structure, first, you need to declare a structure variable and then use

the dot (.) operator along with the structure variable.

Example 1

The four elements of the struct variable book1 are accessed with the dot (.) operator. Hence,

"book1.title" refers to the title element, "book1.author" is the author name, "book1.price" is the

price, "book1.pages" is the fourth element (number of pages).

Take a look at the following example −

https://www.tutorialspoint.com/cprogramming/c_dot_operator.htm

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Output

Title: Learn C

Author: Dennis Ritchie

Price: 675.500000

Pages: 325

Size of book struct: 48

Example 2

In the above program, we will make a small modification. Here, we will put the type

definition and the variable declaration together, like this −

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Note that if you a declare a struct variable in this way, then you cannot initialize it with curly

brackets. Instead, the elements need to be assigned individually.

Output

Title: Learn C

Author: Dennis Ritchie

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Price: 675.500000

Pages: 325

5.2 ARRAY OF STRUCTURES IN C

In C programming, the struct keyword is used to define a derived data type. Once defined,

you can declare an array of struct variables, just like an array of int, float or char types is declared.

An array of structures has a number of use-cases such as in storing records similar to a database

table where you have each row with different data types.

Usually, a struct type is defined at the beginning of the code so that its type can be used

inside any of the functions. You can declare an array of structures and later on fill data in it or you

can initialize it at the time of declaration itself.

Initializing a Struct Array

Let us define a struct type called book as follows −

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

a) Declaring a Struct Array

You can also declare an empty struct array. Afterwards, you can either read the data in it with

scanf() statements or assign value to each element as shown below −

b) Reading a Struct Array

We can also accept data from the user to fill the array.

Example 1

In the following code, a for loop is used to accept inputs for the "title", "price" and "pages"

elements of each struct element of the array.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

strcpy(b[2].title, "C Pearls");

 b[2].price = 250;

 b[2].pages = 325;

 printf("\nList of Books:\n");

 for (int i = 0; i < 3; i++){

 printf("Title: %s \tPrice: %7.2lf \tPages: %d\n", b[i].title, b[i].price, b[i].pages);

 }

 return 0;

}

Output

List of Books:

Title: Learn C Price: 650.50 Pages: 325

Title: C Pointers Price: 175.00 Pages: 225

Title: C Pearls Price: 250.00 Pages: 325

c) Sorting a Struct Array

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Let us take another example of struct array. Here, we will have the array of "book" struct type

sorted in ascending order of the price by implementing bubble sort technique.

Note: The elements of one struct variable can be directly assigned to another struct variable by

using the assignment operator.

Example

Take a look at the example

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 printf("Title: %s \tPrice: %7.2lf \tPages: %d\n", b[i].title, b[i].price, b[i].pages);

 }

 return 0;

}

Output

List of Books in Ascending Order of Price:

Title: C Pointers Price: 175.00 Pages: 225

Title: C Pearls Price: 250.00 Pages: 250

Title: Learn C Price: 650.50 Pages: 325

5.3 POINTERS TO STRUCTURES

You can define pointers to structures in the same way as you define pointers to any other

variable.

a) Declaration of Pointer to a Structure

You can declare a pointer to a structure (or structure pointer) as follows −

struct Books *struct_pointer;

https://www.tutorialspoint.com/cprogramming/c_pointers_to_structures.htm
https://www.tutorialspoint.com/cprogramming/c_pointers.htm

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

b) Initialization of Pointer to a Structure

You can store the address of a structure variable in the above pointer variable struct_pointer. To

find the address of a structure variable, place the '&' operator before the structure's name as

follows −

struct_pointer = & book1;

Let's store the address of a struct variable in a struct pointer variable.

struct book{

 char title[10];

 char author[20];

 double price;

 int pages;

};

struct book book1 = {"Learn C", "Dennis Ritchie", 675.50, 325},

struct book *strptr;

c) Accessing Members Using Pointer to a Structure

To access the members of a structure using a pointer to that structure, you must use the →

operator as follows −

struct_pointer->title;

C defines the → symbol to be used with struct pointer as the indirection operator (also

called struct dereference operator). It helps to access the elements of the struct variable to

which the pointer reference to.

Example

In this example, strptr is a pointer to struct book book1 variable. Hence, strrptr→title returns

the title, just like book1.title does.

Open Com

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Output

Title: Learn C

Author: Dennis Ritchie

Price: 675.500000

Pages: 325

Example 2: DECLARING A POINTER TO A STRUCT ARRAY

We can also declare a pointer to a struct array. C uses the indirection operator (→) to access the

internal elements of struct variables.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Example

The following example shows how you can declare a pointer to a struct array −

printf("Title: %s \tPrice: %7.2lf \tPages: %d\n", ptr -> title, ptr -> price, ptr -> pages);

 ptr++;

 }

 return 0;

}

Output

Title: Learn C Price: 650.50 Pages: 325

Title: C Pointers Price: 175.00 Pages: 225

Title: C Pearls Price: 250.00 Pages: 250

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

5.4 NESTED STRUCTURES

C language allows us to insert one structure into another as a member. This process is called

nesting and such structures are called nested structures. There are two ways in which we can nest

one structure into another:

a). Embedded Structure Nesting

In this method, the structure being nested is also declared inside the parent structure.

Example

struct parent {

 int member1;

 struct member_str member2 {

 int member_str1;

 char member_str2;

 ...

 }

 ...

}

b). Separate Structure Nesting

In this method, two structures are declared separately and then the member structure is nested

inside the parent structure.

Example

struct member_str {

 int member_str1;

 char member_str2;

 ...

}

struct parent {

 int member1;

 struct member_str member2;

 ...

}

One thing to note here is that the declaration of the structure should always be present

before its definition as a structure member. For example, the declaration below is invalid as

the struct mem is not defined when it is declared inside the parent structure.

struct parent {

 struct mem a;

};

struct mem {

https://www.geeksforgeeks.org/nested-structure-in-c-with-examples/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 int var;

};

c) Accessing Nested Members

We can access nested Members by using the same (.) dot operator two times as shown:

str_parent.str_child.member;

Example of Structure Nesting

// C Program to illustrate structure nesting along with forward declaration

#include <stdio.h>

// child structure declaration

struct child {

 int x;

 char c;

};

// parent structure declaration

struct parent {

 int a;

 struct child b;

}

// driver code

int main()

{

 struct parent var1 = { 25, 195, 'A' };

 // accessing and printing nested members

 printf("var1.a = %d\n", var1.a);

 printf("var1.b.x = %d\n", var1.b.x);

 printf("var1.b.c = %c", var1.b.c);

 return 0;

}

Output

var1.a = 25

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

var1.b.x = 195

var1.b.c = A

5.5 UNIONS IN C

A union is a special data type available in C that allows to store different data types in the

same memory location. You can define a union with many members, but only one member can

contain a value at any given time. Unions provide an efficient way of using the same memory

location for multiple purpose.

All the members of a union share the same memory location. Therefore, if we need to use

the same memory location for two or more members, then union is the best data type for that. The

largest union member defines the size of the union.

a) Defining a Union

Union variables are created in same manner as structure variables. The keyword union is used to

define unions in C language.

Syntax

Here is the syntax to define a union in C language −

The "union tag" is optional and each member definition is a normal variable definition, such as

"int i;" or "float f;" or any other valid variable definition. At the end of the union's definition, before

the final semicolon, you can specify one or more union variables.

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

b) Accessing the Union Members

To access any member of a union, we use the member access operator (.). The member access

operator is coded as a period between the union variable name and the union member that we wish

to access. You would use the keyword union to define variables of union type.

Syntax

Here is the syntax to access the members of a union in C language –

union_name.member_name;

c) Initialization of Union Members

You can initialize the members of the union by assigning the value to them using the assignment

(=) operator.

Syntax

Here is the syntax to initialize members of union −

union_variable.member_name = value;

Example

The following code statement shows to initialization of the member "i" of union "data" − data.i =

10;

d) Examples of Union

Example 1

The following example shows how to use unions in a program −

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Output

When the above code is compiled and executed, it produces the following result −

data.i: 1917853763

data.f: 4122360580327794860452759994368.000000

data.str: C Programming

Here, we can see that the values of i and f (members of the union) show garbage values because

the final value assigned to the variable has occupied the memory location and this is the reason

that the value of str member is getting printed very well.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Accessing union Members in C

When you define a union, you're essentially creating a container for multiple members, each of

which can have a different data type. These members share the same memory space that you can

use to store any of the union's members interchangeably. But you can actively access only one of

the members. There are two methods of accessing members of a union in C-

1. Using the dot operator (.)

2. Using the arrow operator/ 'this' pointer (->)

However, note that accessing members of a union in C programs involves working with a specific/

distinct type of data. The most commonly used member types are:

1. Integer Members: These members store whole numbers (integer type).

2. Floating-Point Members: These members store decimal numbers (floats or doubles).

3. Character Members: These members store individual characters.

4. Array Members: These members store collections of elements of the same data type.

https://unstop.com/blog/arrays-in-c

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

5. Pointer Members: These members store memory addresses, pointing to specific locations in

memory.

We can use the dot operator to access most normal data types of union member’s values,

including integer, double, character, string (character array) and floating-point values. But

when working with pointer type members/ union variables, we must use the arrow pointer method.

Let's look at both methods!

Accessing Normal Members of Union in C Using Dot Operator

Accessing normal members of a union in C using the dot operator (.) is straightforward and is

used when the union variable itself is not a pointer. All you have to do is use the dot operator (.)

followed by the member name to access and manipulate the members of the union.

Syntax:

VariableName.member_name;

5.6 FILE HANDLING IN C

In programming, we may require some specific input data to be generated several numbers

of times. Sometimes, it is not enough to only display the data on the console. The data to be

displayed may be very large, and only a limited amount of data can be displayed on the console,

and since the memory is volatile, it is impossible to recover the programmatically generated data

again and again. However, if we need to do so, we may store it onto the local file system which is

volatile and can be accessed every time. Here, comes the need of file handling in C.

File handling in C enables us to create, update, read, and delete the files stored on the local file

system through our C program. The following operations can be performed on a file.

https://unstop.com/blog/pointers-in-c

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

o Creation of the new file

o Opening an existing file

o Reading from the file

o Writing to the file

o Deleting the file

5.6.1 Functions for file handling

There are many functions in the C library to open, read, write, search and close the file. A list of

file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc()
reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

11 rewind() sets the file pointer to the beginning of the file

1) Opening File: fopen()

We must open a file before it can be read, write, or update. The fopen() function is used to open a

file. The syntax of the fopen() is given below.

FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

o The file name (string). If the file is stored at some specific location, then we must mention

the path at which the file is stored. For example, a file name can be

like "c://some_folder/some_file.ext".

o The mode in which the file is to be opened. It is a string.

We can use one of the following modes in the fopen() function.

ode Description

r opens a text file in read mode

w opens a text file in write mode

a

opens a text file

 in append mode

r+
opens a text file in read and write mode

w+ opens a text file in read and write mode

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

a+ opens a text file in read and write mode

rb opens a binary file in read mode

wb opens a binary file in write mode

ab opens a binary file in append mode

rb+ opens a binary file in read and write mode

wb+ opens a binary file in read and write mode

ab+ opens a binary file in read and write mode

The fopen function works in the following way.

o Firstly, It searches the file to be opened.

o Then, it loads the file from the disk and place it into the buffer. The buffer is used to provide

efficiency for the read operations.

o It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.

#include<stdio.h>

void main()

{

FILE *fp ;

char ch ;

fp = fopen("file_handle.c","r") ;

while (1)

{

ch = fgetc (fp) ;

if (ch == EOF)

break ;

printf("%c",ch) ;

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

}

close (fp) ;

Output

The content of the file will be printed.

#include;

void main()

{

FILE *fp; // file pointer

char ch;

fp = fopen("file_handle.c","r");

while (1)

{

ch = fgetc (fp); //Each character of the file is read and stored in the character file.

if (ch == EOF)

break;

printf("%c",ch);

}

fclose (fp);

}

2) Closing File: fclose()

The fclose() function is used to close a file. The file must be closed after performing all the

operations on it. The syntax of fclose() function is given below:

int fclose(FILE *fp);

3) Writing File : fprintf() function

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

The fprintf() function is used to write set of characters into file. It sends formatted output to a

stream.

Syntax:

int fprintf(FILE *stream, const char *format [, argument, ...])

#include <stdio.h>

main(){

 FILE *fp;

 fp = fopen("file.txt", "w");//opening file

 fprintf(fp, "Hello file by fprintf...\n");//writing data into file

 fclose(fp);//closing file

}

4) Reading File: fscanf() function

The fscanf() function is used to read set of characters from file. It reads a word from the file and

returns EOF at the end of file.

Syntax:

int fscanf(FILE *stream, const char *format [, argument, ...])

#include <stdio.h>

main(){

 FILE *fp;

 char buff[255]; //creating char array to store data of file

 fp = fopen("file.txt", "r");

 while(fscanf(fp, "%s", buff)!=EOF)

{

 printf("%s ", buff);

 }

 fclose(fp);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

}

Output:

Hello file by fprintf...

C File Example: Storing employee information

Let's see a file handling example to store employee information as entered by user from console.

We are going to store id, name and salary of the employee.

#include <stdio.h>

void main()

{

 FILE *fptr;

 int id;

 char name[30];

 float salary;

 fptr = fopen("emp.txt", "w+"); /* open for writing */

 if (fptr == NULL)

 {

 printf("File does not exists \n");

 return;

 }

 printf("Enter the id\n");

 scanf("%d", &id);

 fprintf(fptr, "Id= %d\n", id);

 printf("Enter the name \n");

 scanf("%s", name);

 fprintf(fptr, "Name= %s\n", name);

 printf("Enter the salary\n");

 scanf("%f", &salary);

 fprintf(fptr, "Salary= %.2f\n", salary);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 fclose(fptr);

}

Output:

Enter the id

1

Enter the name

Sonoo

Enter the salary

120000

C fputc() and fgetc() Functions

Writing File : fputc() function

The fputc() function is used to write a single character into file. It outputs a character to a stream.

Syntax:

int fputc(int c, FILE *stream)

Example

#include <stdio.h>

main()

{ FILE *fp;

 fp = fopen("file1.txt", "w"); //opening file

 fputc('a',fp); //writing single character into file

 fclose(fp); //closing file

 }

file1.txt

a

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Reading File : fgetc() function

The fgetc() function returns a single character from the file. It gets a character from the stream. It

returns EOF at the end of file.

Syntax:

int fgetc(FILE *stream)

#include<stdio.h>

#include<conio.h>

void main(){

FILE *fp;

char c;

clrscr();

fp=fopen("myfile.txt","r");

while((c=fgetc(fp))!=EOF){

printf("%c",c);

}

fclose(fp);

getch();

}

myfile.txt

this is simple text message

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

5.7 RANDOM ACCESSING FILES IN C LANGUAGE

Random file access in C, enabling direct data reading or writing without processing all

preceding data. Distinct from sequential access, it offers enhanced flexibility for data

manipulation. Random access, ideal for large files, involves functions like ftell(), fseek(),

and rewind(). This method, akin to choosing a song on a CD, requires more coding but offers

superior efficiency and flexibility in file handling.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Where fp is a file pointer and pos holds the current position i.e., total bytes read (or written). For

Example: If a file has 20 bytes of data and if the ftell() function returns 5 it means that 5 bytes

have already been read (or written). Consider the below program to understand

the ftell() function:

First, let us consider a file - Scaler.txt which contains the following data:

Scaler is amazing

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Output:

Position pointer in the beginning : 0

Scaler is amazing

Size of file in bytes is : 17

We can observe that in the beginning, ftell returns 0 as the pointer points to the beginning and after

traversing completely we print each character of the file till the end, and now ftell returns 17 as it

is the size of the file.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

}

Output:

Position of the pointer : 0

Scaler is amazing

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Position of the pointer : 17

Position of the pointer : 0

We can observe that firstly when ftell is called, it returns 0 as the position of the pointer is at the

beginning, and then after traversing the file, when ftell is called, 17 is returned, which is the size

of the file. Now when rewind(fp) is called, the pointer will move to its original position, which

is 0. So last ftell returns 0.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Output:

 is amazing

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

We can observe that when fseek(fp,6,0) the pointer moves to the 7th byte in the file, or we can

say 6 bytes forward from the beginning, So when we traverse the file from that position, we

receive output as is amazing.

File Mode Combinations

Highlights:

File Mode combinations allow us to accomplish reading and writing operations simultaneously.

In general, you can only read from or write to a text file, not simultaneously. A binary file allows

you to read and write to the same file. What you can accomplish with each combination is shown

in the table below:

Combination Type of File Operation

r text read

rb+ binary read

r+ text read, write

r+b binary read, write

rb+ binary read, write

w text write, create, truncate

wb binary write, create, truncate

w+ text read, write, create, truncate

w+b binary read, write, create, truncate

wb+ binary read, write, create, truncate

a text write, create

ab binary write, create

a+ text read, write, create

a+b binary write, create

ab+ binary write, create

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Creating a Random-Access File

Functions like fopen() can be used to create files if they do not exist.

Functions like fopen() can be used to create files if they do not exist. This can be seen in the

example below:

#include<stdio.>

int main()

{

 char ch;

 // file pointer

 FILE *fp;

 // open and creates file in write mode if it does not exist.

 fp = fopen("char", "w");

 if (fptr != NULL)

 {

 printf("File created successfully!\n");

 }

 else

 {

 printf("Failed to create the file.\n");

 return 0;

 }

 fclose(fp)

 return 0;

}

Writing Data Randomly to a Random-Access File

The program writes data to the file "student.txt". It stores data at precise points in the file using a

mix of fseek() and fwrite(). The file position pointer is set to a given place in the file by fseek(),

and then the data is written by fwrite(). Let us see the code below:

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

#include <stdio.h>

// Student structure definition

struct Student {

 char name[20]; // student name

 int roll_number; // roll number

};

int main()

{

 FILE *fp; // file pointer

 // The below line creates a student object with default values

 struct Student s = {"", 0};

 // fopen opens the file, and exits if file cannot be opened

 if (!(fp = fopen("student.txt", "r+")))

 {

 printf("File cannot be opened.");

 return 0;

 }

 // The user will enter information which will be copied to the file

 while(1)

 {

 // require the user to specify roll number

 printf("Enter roll number from (1 to 100) , -1 to end input : ");

 scanf("%d",&s.roll_number);

 if(s.roll_number == -1)

 break;

 // require the user to specify name

 printf("Enter name : ");

 scanf("%s",s.name);

 fseek(fp,(s.roll_number-1)*sizeof(s),0);

 fwrite(&s, sizeof(s), 1, fp);

 }

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 fclose(fp); // fclose closes the file

 return 0;

}

Output:

Enter roll number from (1 to 100) , -1 to end input : 1

Enter name : Scaler

Enter roll number from (1 to 100) , -1 to end input : 10

Enter name : Aaradhya

Enter roll number from (1 to 100) , -1 to end input : -1

5.8 WORKING WITH TEXT FILES AND BINARY FILES.

Files is collection of records (or) it is a place on hard disk, where data is stored

permanently.

Types of Files:

There are two types of files in C language which are as follows −

 Text file

 Binary File

Text File

 It contains alphabets and numbers which are easily understood by human beings.

 An error in a text file can be eliminated when seen.

 In text file, the text and characters will store one char per byte.

 For example, the integer value 4567 will occupy 2 bytes in memory, but, it will occupy 5

bytes in text file.

 The data format is usually line-oriented. Here, each line is a separate command.

Binary file

 It contains 1’s and 0’s, which are easily understood by computers.

 The error in a binary file corrupts the file and is not easy to detect.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 In binary file, the integer value 1245 will occupy 2 bytes in memory and in file.

 A binary file always needs a matching software to read or write it.

 For example, an MP3 file can be produced by a sound recorder or audio editor, and it can

be played in a music player.

 MP3 file will not play in an image viewer or a database software.

Files are classified into following

 Sequential files − Here, data is stored and retained in a sequential manner.

 Random access Files − Here, data is stored and retrieved in a random wa

Differentiators between these two file types:

Aspect Binary File Text File

Data Representation
Stores data in binary format

(1s and 0s).

Stores data as ASCII characters, making

it human-readable.

Use Cases

It is ideal for storing custom

data like images, audio, and

mixed data types.

It is suited for storing user-friendly,

plain text data. Commonly used for

documents, configuration files, etc.

Memory Consumption

Occupies memory based on the

number of bytes in binary

format.

Uses more memory due to character-

based storage (1 byte per character).

Newline Handling
No automatic conversion of

newline characters.

Converts newline characters to carriage

return-line feed combinations.

Accessibility
Requires custom applications or

software for data interpretation.

Can be viewed and edited using simple

text editors.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

End of File Marker

Typically tracks the end of the

file based on the number of

characters present.

Uses a unique ASCII value (26) as an

end-of-file marker.

Data Security

Data is encrypted, making it

secure but challenging to

understand.

Data is less secure, but errors can be

easily identified and corrected.

Error Handling
A single error can corrupt the

entire file, challenging to rectify.

Errors are easier to spot and fix due to

human-readable format.

C File Operations

C file operations refer to the different possible operations that we can perform on a file in C

such as:

1. Creating a new file – fopen() with attributes as “a” or “a+” or “w” or “w+”

2. Opening an existing file – fopen()

3. Reading from file – fscanf() or fgets()

4. Writing to a file – fprintf() or fputs()

5. Moving to a specific location in a file – fseek(), rewind()

6. Closing a file – fclose()

https://www.geeksforgeeks.org/fseek-in-c-with-example/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Functions for C File Operations

Read and Write in a Binary File

Till now, we have only discussed text file operations. The operations on a binary file are

similar to text file operations with little difference.

Opening a Binary File

To open a file in binary mode, we use the rb, rb+, ab, ab+, wb, and wb+ access mode in the

fopen() function. We also use the .bin file extension in the binary filename.

Example

fptr = fopen("filename.bin", "rb");

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

Write to a Binary File

We use fwrite() function to write data to a binary file. The data is written to the binary

file in the from of bits (0’s and 1’s).

Syntax of fwrite()

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *file_pointer);

Parameters:

 ptr: pointer to the block of memory to be written.

 size: size of each element to be written (in bytes).

 nmemb: number of elements.

 file_pointer: FILE pointer to the output file stream.

Return Value:

 Number of objects written.

Example:

 Program to write to a Binary file using fwrite() C

// C program to write to a Binary file using fwrite()

#include <stdio.h>

#include <stdlib.h>

struct threeNum {

 int n1, n2, n3;

};

int main()

{

 int n;

 // Structure variable declared here.

 struct threeNum num;

 FILE* fptr;

 if ((fptr = fopen("C:\\program.bin", "wb")) == NULL) {

 printf("Error! opening file");

 // If file pointer will return NULL

 // Program will exit.

 exit(1);

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT V

 }

 int flag = 0;

 // else it will return a pointer to the file.

 for (n = 1; n < 5; ++n) {

 num.n1 = n;

 num.n2 = 5 * n;

 num.n3 = 5 * n + 1;

 flag = fwrite(&num, sizeof(struct threeNum), 1,

 fptr);

 }

 // checking if the data is written

 if (!flag) {

 printf("Write Operation Failure");

 }

 else {

 printf("Write Operation Successful");

 }

 fclose(fptr);

 return 0;

}

Output

Write Operation Successful

	a) Declare (Create) a Structure
	Syntax of Structure Declaration
	Example

	b) Structure Variable Declaration
	Example

	c) Structure Initialization
	Example

	d) Accessing the Structure Members
	Example 1
	Output

	Example 2
	Output

	5.2 ARRAY OF STRUCTURES IN C
	Initializing a Struct Array
	a) Declaring a Struct Array
	b) Reading a Struct Array
	Example 1
	Output

	c) Sorting a Struct Array
	Example
	Output

	5.3 POINTERS TO STRUCTURES
	a) Declaration of Pointer to a Structure
	b) Initialization of Pointer to a Structure
	c) Accessing Members Using Pointer to a Structure
	Example
	Output

	Example 2: DECLARING A POINTER TO A STRUCT ARRAY
	Example
	Output

	5.4 NESTED STRUCTURES
	a). Embedded Structure Nesting
	b). Separate Structure Nesting
	c) Accessing Nested Members
	Example of Structure Nesting

	5.5 UNIONS IN C
	a) Defining a Union
	Syntax
	Syntax (1)

	c) Initialization of Union Members
	Syntax
	Example

	d) Examples of Union
	Example 1
	Output

	Accessing union Members in C
	Accessing Normal Members of Union in C Using Dot Operator

	5.6 FILE HANDLING IN C
	5.6.1 Functions for file handling
	1) Opening File: fopen()
	Output

	2) Closing File: fclose()

	3) Writing File : fprintf() function
	4) Reading File: fscanf() function
	C File Example: Storing employee information

	C fputc() and fgetc() Functions
	Writing File : fputc() function
	Reading File : fgetc() function

	5.7 RANDOM ACCESSING FILES IN C LANGUAGE
	Creating a Random-Access File
	Writing Data Randomly to a Random-Access File

	Files is collection of records (or) it is a place on hard disk, where data is stored permanently.
	Types of Files:
	Binary file
	Files are classified into following
	C File Operations
	Functions for C File Operations
	Read and Write in a Binary File
	Opening a Binary File
	Write to a Binary File

