24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

STRUCTURES, UNIONS AND FILE HANDLING IN C

Structure: Declaration, Definition-Array of Structures - Pointer to Structure —Nested Structures-
Union: Defining union, Accessing union members. Files: File Management functions, Random

access in file- Working with Text Files and Binary Files.

5.1 STRUCTURE: DECLARATION, DEFINITION

A structure in C is a derived or user-defined data type. We use the keyword struct to
define a custom data type that groups together the elements of different types. The difference
between an array and a structure is that an array is a homogenous collection of similar types,

whereas a structure can have elements of different types stored adjacently and identified by a name.

We are often required to work with values of different data types having certain
relationships among them. For example, a book is described by
its title (string), author (string), price (double), number of pages (integer), etc. Instead of using

four different variables, these values can be stored in a single struct variable.

a) Declare (Create) a Structure

We can create (declare) a structure by using the struct keyword followed by the
structure_tag (structure name) and declare all of the members of the structure inside the curly
braces along with their data types. To define a structure, you must use the struct statement. The

struct statement defines a new data type, with more than one member.
Syntax of Structure Declaration

The format (syntax) to declare a structure is as follows —

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_data_types.htm

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

struct [structure tag]{

member definition;
member definition;
member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition, such as

"int i;" or "float f;" or any other valid variable definition.

At the end of the structure's definition, before the final semicolon, you can specify one or more

structure variables but it is optional.

Example

In the following example we are declaring a structure for Book to store the details of a Book —

struct bn::rc-k:-[
char title[50];
char author[58];

double price;

int pages;

} bookl;

Here, we declared the structure variable book1 at the end of the structure definition. However, you

can do it separately in a different statement.

b) Structure Variable Declaration

To access and manipulate the members of the structure, you need to declare its variable first.
To declare a structure variable, write the structure name along with the "'struct™ keyword followed
by the name of the structure variable. This structure variable will be used to access and manipulate

the structure members.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Example

The following statement demonstrates how to declare (create) a structure variable

struct book book1;

Usually, a structure is declared before the first function is defined in the program, after
the include statements. That way, the derived type can be used for declaring its variable inside any

function.

c) Structure Initialization

The initialization of a struct variable is done by placing the value of each element inside curly
brackets.

Example

The following statement demonstrates the initialization of structure

struct book book1 = {"Learn C", "Dennis Ritchie", 675.50, 325};

d) Accessing the Structure Members

To access the members of a structure, first, you need to declare a structure variable and then use

the dot (.) operator along with the structure variable.
Example 1

The four elements of the struct variable bookl are accessed with the dot (.) operator. Hence,
"book1.title" refers to the title element, "book1.author" is the author name, "book1.price" is the

price, "book1.pages” is the fourth element (number of pages).

Take a look at the following example —

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.tutorialspoint.com/cprogramming/c_dot_operator.htm

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

#include <stdio.h>

struct book{
char title[10];
char author[20];
double price;

int pages,

int main(){

struct book bookl = {"Learn C", "Dennis Ritchie"”, 675

orintf("Title: #s \n", bookl.title);
orintf("Author: %s \n", bookl.author);
orintf("Price: %1¥\n™, bookl.price);
orintf (" 51 %d \n", bookl.pages);
printf(“"Size of book struct: %d", sizeof(struct book));

return ©;

Output

Title: Learn C
Author: Dennis Ritchie
Price: 675.500000
Pages: 325

Size of book struct: 48

Example 2

In the above program, we will make a small modification. Here, we will put the type

definition and the variable declaration together, like this —

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

struct book{

char title[1@];
char author[28];
double price;
int pages,

} bookl;

Note that if you a declare a

struct variable in this way, then you cannot initialize it with curly

brackets. Instead, the elements need to be assigned individually.

#include <string.h>

struct book{
char title[19];
char author[28];
double price;
int pages;

} bookl;

int main(){
strcpy(bookl.title,

strcpy(bookl . author

"Learn C");

, "Dennis Ritchie™);

bookl.price = 675.50;

bookl.pages

rintf("Title:

rintf({ "Author:

\n", bookl.title);

“n", bookl.author);

F wn", bookl.price);

“n", bookl.pages);

return @;

Output
Title: Learn C
Author: Dennis Ritchie

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Price: 675.500000
Pages: 325

5.2 ARRAY OF STRUCTURES IN C

In C programming, the struct keyword is used to define a derived data type. Once defined,
you can declare an array of struct variables, just like an array of int, float or char types is declared.
An array of structures has a number of use-cases such as in storing records similar to a database
table where you have each row with different data types.

Usually, a struct type is defined at the beginning of the code so that its type can be used
inside any of the functions. You can declare an array of structures and later on fill data in it or you
can initialize it at the time of declaration itself.

Initializing a Struct Array

Let us define a struct type called book as follows —

struct book{

char title[1@];

double price;

int pages;

During the program, you can declare an array and initialize it by giving the values of
each element inside curly brackets. Each element in the struct array is a struct value
itself. Hence, we have the nested curly brackets as shown below —

struct book b[3]
"Learn C™

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

How does the compiler allocate memory for this array? Since we have an array of
three elements, of struct whose size is 32 bytes, the array occupies "32 x 3" bytes.
Each block of 32 bytes will accommodate a "title”, "price” and "pages” element.

L E A R N C 675.50 325
C P 0] I N T E R 5 175 225
C P E A R L S 250 250

a) Declaring a Struct Array

You can also declare an empty struct array. Afterwards, you can either read the data in it with

scanf() statements or assign value to each element as shown below —

struct book b[3];
y(b[8].title, “Learn C");
.price = 6

8].pages=3

y{b[1].title, "C Pointers™);
.price = 175;

.pages=225;

(b[2].title, "C

2].price

b[2].pages=325;

b) Reading a Struct Array

We can also accept data from the user to fill the array.

Example 1

In the following code, a for loop is used to accept inputs for the "title”, "price” and "pages"

elements of each struct element of the array.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

#include <stdio.h>
struct book{
char title[1@];

double price;

int pages;

"Learn C");

strcpy(b[1].title, "C Pointers™);

b[1].price = 175;

strepy(b[2].title, "C Pearls");
b[2].price = 250;

b[2].pages = 325;

printf("\nList of Books:\n");

for (inti=0;1<3; it++){

printf("Title: %s \tPrice: %7.21f \tPages: %d\n", b[i].title, b[i].price, b[i].pages);

Output

List of Books:

Title: Learn C Price: 650.50 Pages: 325
Title: C Pointers Price: 175.00 Pages: 225
Title: C Pearls Price: 250.00 Pages: 325

c) Sorting a Struct Array

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Let us take another example of struct array. Here, we will have the array of "book" struct type

sorted in ascending order of the price by implementing bubble sort technique.

Note: The elements of one struct variable can be directly assigned to another struct variable by
using the assignment operator.

Example

Take a look at the example

#include <stdio.h>|
struct book{

char title[15];

double price;

int pages;

~ruct book temp;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

= @A 3 &£ 7= 3 I
=8; 1< 2; i++){

for(3 = 1; 3 < 3; 3+

if (b[i].price > b[j].price){
temp = b[i];
b[i] = b[]];
b[j] = temp;

return O;
§

Output

List of Books in Ascending Order of Price:
Title: C Pointers Price: 175.00 Pages: 225
Title: C Pearls Price: 250.00 Pages: 250
Title: Learn C Price: 650.50 Pages: 325

5.3 POINTERS TO STRUCTURES

You can define pointers to structures in the same way as you define pointers to any other

variable.

a) Declaration of Pointer to a Structure

You can declare a pointer to a structure (or structure pointer) as follows —

struct Books *struct_pointer;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.tutorialspoint.com/cprogramming/c_pointers_to_structures.htm
https://www.tutorialspoint.com/cprogramming/c_pointers.htm

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

b) Initialization of Pointer to a Structure

You can store the address of a structure variable in the above pointer variable struct_pointer. To
find the address of a structure variable, place the '&' operator before the structure's name as

follows —

struct_pointer = & bookl;

Let's store the address of a struct variable in a struct pointer variable.

struct book{
char title[10];
char author[20];
double price;
int pages;

j2

struct book bookl = {"Learn C", "Dennis Ritchie", 675.50, 325},

struct book *strptr;

c) Accessing Members Using Pointer to a Structure

To access the members of a structure using a pointer to that structure, you must use the —

operator as follows —

struct_pointer->title;

C defines the — symbol to be used with struct pointer as the indirection operator (also
called struct dereference operator). It helps to access the elements of the struct variable to

which the pointer reference to.
Example

In this example, strptr is a pointer to struct book book1 variable. Hence, strrptr—title returns
the title, just like bookl.title does.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

struct book{
char title[1@];
char author[28];
double price;

int pages,

int main (){
struct book bookl = {"Learn C”, "Dennis Ritchie",
struct book *strptr;

strptr = &bookl;

rintf("Title: %s \n", strptr -> title);

yrintf("Author: %s \n™, strptr -> author);

F.
F.
printf{“Price: % wn", strptr -> price);
.

rintf("Pages: %d \n", strptr -> pages);

return ©;

Output

Title: Learn C

Author: Dennis Ritchie
Price: 675.500000
Pages: 325

Example 2: DECLARING A POINTER TO A STRUCT ARRAY

We can also declare a pointer to a struct array. C uses the indirection operator (—) to access the

internal elements of struct variables.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Example
The following example shows how you can declare a pointer to a struct array —

#include <stdio.h>

ctruct book {

char title[15];
double pFiCEj

int pages,

(“C Pointers'
'"C Pearls

printf("Title: %s \tPrice: %7.21f \tPages: %d\n", ptr -> title, ptr -> price, ptr -> pages);

Output

Title: Learn C Price: 650.50 Pages: 325
Title: C Pointers Price: 175.00 Pages: 225
Title: C Pearls Price: 250.00 Pages: 250

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

5.4 NESTED STRUCTURES
C language allows us to insert one structure into another as a member. This process is called

nesting and such structures are called nested structures. There are two ways in which we can nest
one structure into another:
a). Embedded Structure Nesting

In this method, the structure being nested is also declared inside the parent structure.
Example

struct parent {
int memberl;
struct member_str member2 {
int member_strl;
char member_str2;

b). Separate Structure Nesting

In this method, two structures are declared separately and then the member structure is nested
inside the parent structure.
Example

struct member_str {
int member_strl;
char member_str2;

)

struct parent {
int memberl;
struct member_str member2;

One thing to note here is that the declaration of the structure should always be present
before its definition as a structure member. For example, the declaration below is invalid as
the struct mem is not defined when it is declared inside the parent structure.

struct parent {
struct mem a;

&

struct mem {

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/nested-structure-in-c-with-examples/

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

int var;

&

c) Accessing Nested Members

We can access nested Members by using the same (.) dot operator two times as shown:
str_parent.str_child.member;

Example of Structure Nesting

/I C Program to illustrate structure nesting along with forward declaration

#include <stdio.h>

// child structure declaration

struct child {
int x;
char c;

¥

// parent structure declaration

struct parent {
nt a;
struct child b;

}

// driver code

int main()

{
struct parent varl = { 25, 195,'A' };
// accessing and printing nested members
printf("varl.a = %d\n", varl.a);
printf("varl.b.x = %d\n", varl.b.x);
printf("varl.b.c = %c", varl.b.c);
return 0;

}

Output

varl.a =25

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

varl.b.x =195

varl.b.c=A

5.5 UNIONS IN C

A union is a special data type available in C that allows to store different data types in the
same memory location. You can define a union with many members, but only one member can
contain a value at any given time. Unions provide an efficient way of using the same memory

location for multiple purpose.

All the members of a union share the same memory location. Therefore, if we need to use
the same memory location for two or more members, then union is the best data type for that. The

largest union member defines the size of the union.

a) Defining a Union

Union variables are created in same manner as structure variables. The keyword union is used to

define unions in C language.
Syntax
Here is the syntax to define a union in C language —
union [union tag]{
member definition;

member definition;

member definition;

} [one or more union variables];

The "union tag" is optional and each member definition is a normal variable definition, such as
"Int i;" or "float f;" or any other valid variable definition. At the end of the union’s definition, before

the final semicolon, you can specify one or more union variables.
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

b) Accessing the Union Members

To access any member of a union, we use the member access operator (.). The member access
operator is coded as a period between the union variable name and the union member that we wish

to access. You would use the keyword union to define variables of union type.

Syntax

Here is the syntax to access the members of a union in C language —

union_name.member_name;

c) Initialization of Union Members

You can initialize the members of the union by assigning the value to them using the assignment

(=) operator.

Syntax

Here is the syntax to initialize members of union —

union_variable.member name = value;

Example

The following code statement shows to initialization of the member "i" of union "data" —
10;

d) Examples of Union

Example 1

The following example shows how to use unions in a program —

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

#include <stdio.h>

#include <string.h>

union Dataf{
int i;
float +;

char str[20];

int main(){

union Data data;

data.i
data.f

strcpy(data.str, “C Programming™);

printf(“data.i: %d \n", data.i);
printf(“"data.f: %f \n", data.f);

printf(“data.str: %s \n", data.str);

return @;

Output
When the above code is compiled and executed, it produces the following result —

data.i: 1917853763
data.f: 4122360580327794860452759994368.000000

data.str: C Programming

Here, we can see that the values of i and f (members of the union) show garbage values because
the final value assigned to the variable has occupied the memory location and this is the reason

that the value of str member is getting printed very well.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Accessing union Members in C

union empAdd

dataltype variable el cName & stname & pincode

employee [3] 3020

union empAdd m—

union dmpAdd

=l €Name & stname & pincode

pt 3020

‘pt = employee [ERERI—

Store one value at a time in the allocated memory
highest size of the variable will be the memory size

ename stname pincode

o T

g 3020 Wi ‘(pt).stname
ptr 2020 o
2020 == (pt).pincode

When you define a union, you're essentially creating a container for multiple members, each of
which can have a different data type. These members share the same memory space that you can
use to store any of the union's members interchangeably. But you can actively access only one of

the members. There are two methods of accessing members of a union in C-

Using the dot operator (.)
Using the arrow operator/ 'this' pointer (->)

However, note that accessing members of a union in C programs involves working with a specific/

distinct type of data. The most commonly used member types are:

Integer Members: These members store whole numbers (integer type).
Floating-Point Members: These members store decimal numbers (floats or doubles).
Character Members: These members store individual characters.

Array Members: These members store collections of elements of the same data type.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://unstop.com/blog/arrays-in-c

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

5. Pointer Members: These members store memory addresses, pointing to specific locations in

memory.

We can use the dot operator to access most normal data types of union member’s values,
including integer, double, character, string (character array) and floating-point values. But
when working with pointer type members/ union variables, we must use the arrow pointer method.

Let's look at both methods!
Accessing Normal Members of Union in C Using Dot Operator

Accessing normal members of a union in C using the dot operator (.) is straightforward and is
used when the union variable itself is not a pointer. All you have to do is use the dot operator (.)

followed by the member name to access and manipulate the members of the union.

Syntax:

VariableName.member name;

Here, we specify the name of the union variable (variableName) and the name of the union member
(member_name), connected with a dot operator. We have already seen how to use this approach in the example
above, but here s another sample C program demonstrating how o access members of & union in C using the
dot operator:

5.6 FILE HANDLING IN C

In programming, we may require some specific input data to be generated several numbers
of times. Sometimes, it is not enough to only display the data on the console. The data to be
displayed may be very large, and only a limited amount of data can be displayed on the console,
and since the memory is volatile, it is impossible to recover the programmatically generated data
again and again. However, if we need to do so, we may store it onto the local file system which is

volatile and can be accessed every time. Here, comes the need of file handling in C.

File handling in C enables us to create, update, read, and delete the files stored on the local file

system through our C program. The following operations can be performed on a file.

~UOLNI CULLCUOL U CINGLUNCERIING AIND 1 CLCHINVULUOY

https://unstop.com/blog/pointers-in-c

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

o Creation of the new file
o Opening an existing file
o Reading from the file

o Writing to the file

o Deleting the file

5.6.1 Functions for file handling

There are many functions in the C library to open, read, write, search and close the file. A list of

file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file
5 fgetc()

reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position
8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

11 rewind() sets the file pointer to the beginning of the file

1) Opening File: fopen()

We must open a file before it can be read, write, or update. The fopen() function is used to open a

file. The syntax of the fopen() is given below.

FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

o The file name (string). If the file is stored at some specific location, then we must mention
the path at which the file is stored. For example, a file name can be
like "c://some_folder/some_file.ext".

o The mode in which the file is to be opened. It is a string.

We can use one of the following modes in the fopen() function.

Description

r opens a text file in read mode

w opens a text file in write mode

opens a text file

a

in append mode
r+ . .

opens a text file in read and write mode
w+t opens a text file in read and write mode

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

a+t opens a text file in read and write mode
b opens a binary file in read mode

wb opens a binary file in write mode

ab opens a binary file in append mode

rb+ opens a binary file in read and write mode
wb+ opens a binary file in read and write mode
ab+ opens a binary file in read and write mode

The fopen function works in the following way.

o Firstly, It searches the file to be opened.
o Then, it loads the file from the disk and place it into the buffer. The buffer is used to provide
efficiency for the read operations.

o It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.

#include<stdio.h>
void main()
{
FILE *fp ;
char ch;
fp = fopen("file_handle.c","r") ;
while (1)

ch=fgetc (fp);
if (ch==EOF)
break ;

printf("%c",ch) ;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

}
close (fp) ;

Output
The content of the file will be printed.

#include;

void main()

{

FILE *fp; // file pointer

char ch;

fp = fopen(*file_handle.c","r");
while (1)

{

ch = fgetc (fp); //Each character of the file is read and stored in the character file.
if (ch==EOF)

break;

printf("%c",ch);

}

fclose (fp);

}

2) Closing File: fclose()

The fclose() function is used to close a file. The file must be closed after performing all the

operations on it. The syntax of fclose() function is given below:

int fclose(FILE *fp);

3) Writing File : fprintf() function

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

The fprintf() function is used to write set of characters into file. It sends formatted output to a

stream.
Syntax:

int fprintf(FILE *stream, const char *format [, argument, ...])
#include <stdio.h>
main() {
FILE *fp;
fp = fopen("file.txt", "w");//opening file
fprintf(fp, "Hello file by fprintf...\n");//writing data into file
fclose(fp);//closing file

}

4) Reading File: fscanf() function

The fscanf() function is used to read set of characters from file. It reads a word from the file and
returns EOF at the end of file.

Syntax:

int fscanf(FILE *stream, const char *format [, argument, ...])

#include <stdio.h>
main(){
FILE *fp;
char buff]255]; //creating char array to store data of file
fp = fopen("file.txt", "r");
while(fscanf(fp, "%s", buff)!=EOF)
{
printf("%s ", buff);

§
fclose(fp);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

}
Output:

Hello file by fprintf...

C File Example: Storing employee information

Let's see a file handling example to store employee information as entered by user from console.
We are going to store id, name and salary of the employee.

#include <stdio.h>

void main()

FILE *fptr;
int id;
char name[30];
float salary;
fptr = fopen("emp.txt", "w+"); /* open for writing */
if (fptr == NULL)
{
printf("File does not exists \n");
return;
}
printf("Enter the id\n");
scanf("%d", &id);
fprintf(fptr, "Id= %d\n", id);
printf("Enter the name \n");
scanf("%s", name);
fprintf(fptr, "Name= %s\n", name);
printf("Enter the salary\n");
scanf("%ft", &salary);
fprintf(fptr, "Salary= %.2f\n", salary);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

fclose(fptr);
}

Output:

Enter the id

1

Enter the name
Sonoo

Enter the salary
120000

C fputc() and fgetc() Functions

Writing File : fputc() function

The fputc() function is used to write a single character into file. It outputs a character to a stream.
Syntax:

int fputc(int ¢, FILE *stream)
Example

#include <stdio.h>

main()
{ FILE *fp;
fp = fopen("filel.txt", "w"); /lopening file
fpute('a’,fp); //writing single character into file
fclose(fp); //closing file
}
filel.txt

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Reading File : fgetc() function

The fgetc() function returns a single character from the file. It gets a character from the stream. It
returns EOF at the end of file.

Syntax:

int fgetc(FILE *stream)
#include<stdio.h>
#include<conio.h>
void main(){
FILE *fp;
char c;
clrscr();
fp=fopen("myfile.txt","r");

while((c=fgetc(fp))!=EOF){
printf("%c",c);
}

fclose(fp);
getch();

}

myfile.txt

this is simple text message

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

5.7 RANDOM ACCESSING FILES IN C LANGUAGE

Random file access in C, enabling direct data reading or writing without processing all
preceding data. Distinct from sequential access, it offers enhanced flexibility for data
manipulation. Random access, ideal for large files, involves functions like ftell(), fseek(),
and rewind(). This method, akin to choosing a song on a CD, requires more coding but offers

superior efficiency and flexibility in file handling.

Sequential Access -
NV VOV VOV OV OV OV OV VN
1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 8 9 l 10 l 11

AccessOrder:1 23456 789 10 11

Random Access -
NN N N
1‘2‘3|4|5|E|7|H|9|1{}|11
N DS Y P A S

AccessOrder:2 5911 10 TE 2461

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

How to use the ftell() functionin C
Highlights:
1. ftell() is used to find the position of the file pointer from the starting of the file.

2. Its syntax is as follows:

ftell(FILE *fp)

In C, the function ftell() is used to determine the file pointer's location relative to the
file's beginning. ftell() has the following syntax:

pos = Ttell(FILE *fp);

Where fp is a file pointer and pos holds the current position i.e., total bytes read (or written). For
Example: If a file has 20 bytes of data and if the ftell() function returns 5 it means that 5 bytes

have already been read (or written). Consider the below program to understand
the ftell() function:

First, let us consider a file - Scaler.txt which contains the following data:

Scaler is amazing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#include<stdio.h>
maiﬂﬂ}
FILE *fp;

fp=fopen("scaler.
(!fp)

printf("Error: cannot be opened\n") ;

-
e;

> pointer points to the

ion pointer in the beginning

print 1ts contents unt

dyn",ftell(fp));

Position pointer in the beginning : 0
Scaler is amazing
Size of file in bytes is : 17

We can observe that in the beginning, ftell returns 0 as the pointer points to the beginning and after

traversing completely we print each character of the file till the end, and now ftell returns 17 as it

is the size of the file.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

How to use the rewind() functionin C
Highlights:

1. rewind() is used to move the file pointer to the beginning of the file.

2. Its syntax is as follows:

The file pointer is moved to the beginning of the file using this function. It comes in

handy when we need to update a file. The following is the syntax:

rewind (FILE *fp);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Here, fp is a file pointer of type FILE. Consider the following program to understand

the rewind() function:

#include<stdio.h>

main{}

FILE *fp;

fp = fopen(

its contents unt

rewind(fp)

printf("Position of the pointer

Position of the pointer : 0

Scaler is amazing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Position of the pointer : 17

Position of the pointer : 0

We can observe that firstly when ftell is called, it returns O as the position of the pointer is at the
beginning, and then after traversing the file, when ftell is called, 17 is returned, which is the size
of the file. Now when rewind(fp) is called, the pointer will move to its original position, which

1s 0. So last ftell returns 0.

How to use the fseek() functionin C
Highlights:

1. The fseek() function moves the file position to the desired location.

2. Its syntax is:

displacement,

To shift the file position to a specified place, use the fseek() function.

Syntax:

The various components are as follows:
* fp-file pointer.

¢ displacement- represents the number of bytes skipped backwards or forwards
from the third argument's location. It's a long integer that can be either positive

or negative.

* origin- It's the location relative to the displacement. It accepts one of the three

values listed below.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Constant Value Position
SEEK_SET 0 Beginning of file
SEEK_CURRENT 1 Current position
SEEK_END 2 End of file

Here is the list of common operations that we can perform using the fseek() function.

Here is the list of common operations that we can perform using the fseek() function.

Operation Description
fseek(fp, 0, 0) This takes us to the beginning of the file.
fseek(fp, 0, 2} This takes us to the end of the file.
fseek(fp, N, 0) This takes us to (N + 1)th bytes in the file.
fseek(fp, N, 1) This takes us N bytes forward from the current position in the file.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

fseek(fp, -N, 1) This takes us N bytes backward from the current position in the file.

fseek(fp, -N, 2) This takes us N bytes backward from the end position in the file.

Let us see the below program to understand the fseek() function:

printf("Error: File cannot be openedin™);

s contents unt

Output:

is amazing

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

We can observe that when fseek(fp,6,0) the pointer moves to the 7th byte in the file, or we can
say 6 bytes forward from the beginning, So when we traverse the file from that position, we

receive output as is amazing.

File Mode Combinations

Highlights:

File Mode combinations allow us to accomplish reading and writing operations simultaneously.

In general, you can only read from or write to a text file, not simultaneously. A binary file allows
you to read and write to the same file. What you can accomplish with each combination is shown

in the table below:

Combination [Type of File Operation

r text read

rb+ binary read

r+ text read, write

r+b binary read, write

rb+ binary read, write

\ text write, create, truncate

wb binary write, create, truncate

Wt text read, write, create, truncate
w-+b binary read, write, create, truncate
wb+ binary read, write, create, truncate
a text write, create

ab binary write, create

a+ text read, write, create

atb binary write, create

ab+ binary write, create

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Creating a Random-Access File

Functions like fopen() can be used to create files if they do not exist.

Functions like fopen() can be used to create files if they do not exist. This can be seen in the

example below:

#include<stdio.>
int main()
{
char ch;
// file pointer
FILE *fp;
// open and creates file in write mode if it does not exist.
fp = fopen("char", "w");
if (fptr = NULL)

i
¢

printf("File created successfully!\n");

1
S

else
{
|
printf("Failed to create the file.\n");

return 0;

1
s

fclose(fp)

return 0;

Writing Data Randomly to a Random-Access File

The program writes data to the file "student.txt". It stores data at precise points in the file using a
mix of fseek() and fwrite(). The file position pointer is set to a given place in the file by fseek(),

and then the data is written by fwrite(). Let us see the code below:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

#include <stdio.h>

/I Student structure definition
struct Student {
char name[20]; // student name
int roll_number; // roll number
Y
int main()
{
FILE *fp; // file pointer
/I The below line creates a student object with default values
struct Student s = {"", 0};
/ fopen opens the file, and exits if file cannot be opened
if (!(fp = fopen("student.txt”, "r+")))
{
printf("File cannot be opened.");
return O;
}
Il The user will enter information which will be copied to the file
while(1)
{

/I require the user to specify roll number

printf("Enter roll number from (1 to 100) , -1 to end input : *);

scanf(*'%d",&s.roll_number);
if(s.roll_number == -1)
break;

Il require the user to specify name
printf("Enter name : ");
scanf(*'%s",s.name);

fseek(fp,(s.roll_number-1)*sizeof(s),0);
fwrite(&s, sizeof(s), 1, fp);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

fclose(fp); // fclose closes the file

return O;

Output:

Enter roll number from (1 to 100) , -1 to end input : 1
Enter name : Scaler

Enter roll number from (1 to 100) , -1 to end input : 10
Enter name : Aaradhya

Enter roll number from (1 to 100) , -1 to end input : -1

5.8 WORKING WITH TEXT FILES AND BINARY FILES.

Files is collection of records (or) it is a place on hard disk, where data is stored

permanently.
Types of Files:
There are two types of files in C language which are as follows —

o Text file
e Binary File

Text File

« It contains alphabets and numbers which are easily understood by human beings.
e Anerrorin atext file can be eliminated when seen.
e Intext file, the text and characters will store one char per byte.
o For example, the integer value 4567 will occupy 2 bytes in memory, but, it will occupy 5
bytes in text file.
e The data format is usually line-oriented. Here, each line is a separate command.
Binary file
e It contains 1’s and 0’s, which are easily understood by computers.
e The error in a binary file corrupts the file and is not easy to detect.
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

e Inbinary file, the integer value 1245 will occupy 2 bytes in memory and in file.

e A binary file always needs a matching software to read or write it.

o For example, an MP3 file can be produced by a sound recorder or audio editor, and it can

be played in a music player.

o MP3 file will not play in an image viewer or a database software.

Files are classified into following

e Sequential files — Here, data is stored and retained in a sequential manner.

o Random access Files — Here, data is stored and retrieved in a random wa

Differentiators between these two file types:

Aspect

Data Representation

Use Cases

Memory Consumption

Newline Handling

Accessibility

Binary File

Stores data in binary format

(Is and 0s).

It is ideal for storing custom
data like images, audio, and

mixed data types.

Occupies memory based on the
number of bytes in binary

format.

No automatic conversion of

newline characters.

Requires custom applications or

software for data interpretation.

Text File

Stores data as ASCII characters, making

it human-readable.

It is suited for storing user-friendly,
plain text data. Commonly used for

documents, configuration files, etc.

Uses more memory due to character-

based storage (1 byte per character).

Converts newline characters to carriage

return-line feed combinations.

Can be viewed and edited using simple

text editors.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Typically tracks the end of the

Uses a unique ASCII value (26) as an
End of File Marker file based on the number of

end-of-file marker.
characters present.

Data is encrypted, making it .
Data is less secure, but errors can be

Data Security secure but challenging to o
easily identified and corrected.
understand.
A single error can corrupt the Errors are easier to spot and fix due to
Error Handling

entire file, challenging to rectify. human-readable format.

C File Operations
C file operations refer to the different possible operations that we can perform on a file in C
such as:

Creating a new file — fopen() with attributes as “a” or “a+” or “w” or “w+”

Opening an existing file — fopen()

Reading from file — fscanf() or fgets()

1

2

3

4. Writing to a file — fprintf() or fputs()

5. Moving to a specific location in a file — fseek(), rewind()
6

Closing a file — fclose()

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

https://www.geeksforgeeks.org/fseek-in-c-with-example/

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Functions for C File Operations

File operation

Declaration & Description

fopen() - To open a
file

Declaration: FILE *fopen (const char *filename, const char *mode)

fopen() function is used to open a file to perform operations such as reading, writing
etc. In a C program, we declare a file pointer and use fopen() as below. fopen()
function creates a new file if the mentioned file name does not exist.
FILE *fp;
fp=fopen (“filename”, "*‘mode”);
Where,
fp - file pointer to the data type “FILE".
filename - the actual file name with full path of the file.
mode - refers to the operation that will be performed on the file. Example: 1, w, a, r+,
w+ and a+. Please refer below the description for these mode of operations.

fclose() - To close a
file

Declaration: int fclose(FILE *fp);
fclose() function closes the file that is being pointed by file pointer fp. In a C program,
we close a file as below.
fclose (fp);

fgets() - To read a
file

Declaration: char *fgets(char *string, int n, FILE *fp)
fgets function is used to read a file line by line. In a C program, we use fgets function
as below.
fgets (buffer, size, fp);
where,
buffer - buffer to put the data in.
size - size of the buffer
fp - file pointer

fprintf() - To write
into a file

Declaration:
int fprintf(FILE *fp, const char *format, ...);fprintf() function writes string into a file
pointed by fp. In a C program, we write string into a file as below. fprintf (fp, “some
data”); or
fprintf (fp, “text %d”, variable name);

Read and Write in a Binary File

Till now, we have only discussed text file operations. The operations on a binary file are

similar to text file operations with little difference.

Opening a Binary File

To open a file in binary mode, we use the rb, rb+, ab, ab+, wb, and wh+ access mode in the

fopen() function. We also use the .bin file extension in the binary filename.

Example

fptr = fopen("filename.bin", "rb");

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

Write to a Binary File
We use fwrite() function to write data to a binary file. The data is written to the binary
file in the from of bits (0’s and 1°s).
Syntax of fwrite()
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *file_pointer);
Parameters:
e ptr: pointer to the block of memory to be written.
e size: size of each element to be written (in bytes).
e nmemb: number of elements.
o file_pointer: FILE pointer to the output file stream.
Return Value:

e Number of objects written.

Example:
Program to write to a Binary file using fwrite() C
/I C program to write to a Binary file using fwrite()
#include <stdio.h>
#include <stdlib.h>
struct threeNum {
int n1, n2, n3;
Y
int main()
{
int n;
/I Structure variable declared here.
struct threeNum num;
FILE™ fptr;
if ((fptr = fopen("C:\\program.bin”, "wb")) == NULL) {
printf("Error! opening file");
/I If file pointer will return NULL
/I Program will exit.
exit(1);
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C - UNIT V

}
int flag = 0;
I/ else it will return a pointer to the file.
for (n=1;n<5; ++n) {

num.nl =n;

num.n2 =5 * n;

numn3=5*n+1;

flag = fwrite(&num, sizeof(struct threeNum), 1,

fptr);

}
/I checking if the data is written
if (Iflag) {

printf(""Write Operation Failure™);
}
else {

printf(""Write Operation Successful™);
}
fclose(fptr);

return 0;

}
Output

Write Operation Successful

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

	a) Declare (Create) a Structure
	Syntax of Structure Declaration
	Example

	b) Structure Variable Declaration
	Example

	c) Structure Initialization
	Example

	d) Accessing the Structure Members
	Example 1
	Output

	Example 2
	Output

	5.2 ARRAY OF STRUCTURES IN C
	Initializing a Struct Array
	a) Declaring a Struct Array
	b) Reading a Struct Array
	Example 1
	Output

	c) Sorting a Struct Array
	Example
	Output

	5.3 POINTERS TO STRUCTURES
	a) Declaration of Pointer to a Structure
	b) Initialization of Pointer to a Structure
	c) Accessing Members Using Pointer to a Structure
	Example
	Output

	Example 2: DECLARING A POINTER TO A STRUCT ARRAY
	Example
	Output

	5.4 NESTED STRUCTURES
	a). Embedded Structure Nesting
	b). Separate Structure Nesting
	c) Accessing Nested Members
	Example of Structure Nesting

	5.5 UNIONS IN C
	a) Defining a Union
	Syntax
	Syntax (1)

	c) Initialization of Union Members
	Syntax
	Example

	d) Examples of Union
	Example 1
	Output

	Accessing union Members in C
	Accessing Normal Members of Union in C Using Dot Operator

	5.6 FILE HANDLING IN C
	5.6.1 Functions for file handling
	1) Opening File: fopen()
	Output

	2) Closing File: fclose()

	3) Writing File : fprintf() function
	4) Reading File: fscanf() function
	C File Example: Storing employee information

	C fputc() and fgetc() Functions
	Writing File : fputc() function
	Reading File : fgetc() function

	5.7 RANDOM ACCESSING FILES IN C LANGUAGE
	Creating a Random-Access File
	Writing Data Randomly to a Random-Access File

	Files is collection of records (or) it is a place on hard disk, where data is stored permanently.
	Types of Files:
	Binary file
	Files are classified into following
	C File Operations
	Functions for C File Operations
	Read and Write in a Binary File
	Opening a Binary File
	Write to a Binary File

