1.4 BUILD YOUR FIRST WEB SERVER

uilding your first web server is an exciting way to dive into web development.
Here's a simple guide to help you set up a basic web server. For simplicity, we'll
use Node.js and its built-in HTTP module, as it provides an easy way to get
started.

Prerequisites

1. Install Node.js: Download and install Node.js. This will give you access to
both node and npm (Node Package Manager).
2. Code Editor: Use an editor like Vs Code

Steps to Create a Basic Web Server

1. Create Your Project Directory:
mkdir my-web-server

cd my-web-server

2. Initialize a Node.js Project:
npm init -y

This will create a package.json file with default settings.

3. Create a JavaScript File: Create a file named server.js in
your project directory.

4. Write Basic Server Code: Open server.js in your editor and
add the following code:

const http = require(‘http’);

const hostname = '127.0.0.1"; // Localhost

const port = 3000; I/ Port number

const server = http.createServer((req, res) => {

https://nodejs.org/
https://code.visualstudio.com/

res.statusCode = 200; // HTTP status: OK
res.setHeader(‘Content-Type', ‘text/html");

res.end('<h1>Hello, World!</h1>"),

b;

server.listen(port, hostname, () => {

console.log("Server running at http://${hostname}.${port}/");
hok

5. Run Your Server: In your terminal, run
node server.js
Server running at http://127.0.0.1:3000/

6. Access the Server: Open your browser and go to
http://127.0.0.1:3000/.

You should see "Hello, World!" displayed
Using Built-in HTTP module

HTTP and HTTPS, these two inbuilt modules are used to create a
simple server. The HTTPS module provides the feature of the
encryption of communication with the help of the secure layer feature
of this module. Whereas the HTTP module doesn’t provide the
encryption of the data.

Approach

Building a simple Node.js web server with the http module by using
http.createServer(), which listens for requests, sends responses, and is
ideal for understanding core server functionality.

Project structure: It will look like this.

https://www.geeksforgeeks.org/https-in-node-js/

v NODE.JS

JS index,s

{} package.json

Il Filename - index.js

/I Importing the http module
const http = require(*'http")

/I Creating server
const server = http.createServer((req, res) => {
Il Sending the response
res.write("This is the response from the server")

res.end();

})

Il Server listening to port 3000

server.listen((3000), () => {
console.log("Server is Running");

by

Run index.js file using below command:

node index.js

~/Desktop/Node. js

$ node index.js
Server is Running

utput: Now open your browser and go to http://localhost:3000/, you will see
the following output:

& C @® localhost:3000

This 1s the response from the server

Using Express Module

The express.js is one of the most powerful frameworks of the node.js that works on
the upper layer of the http module. The main advantage of using express.js server
is filtering the incoming requests by clients.

Approach

To create a web server with Express initialize an app with express(), defining
routes with app.get(), and sending responses using res.send(). Express simplifies
development with built-in features and middleware.

Installing module: Install the required module using the following command.
npm install express

Project structure: It will look like this.

https://www.geeksforgeeks.org/express-js/

v NODE.JS
> node_modules
J5 index,s

{} package-lockjson

{} package.json

Example:This example demonstrates creating a simple web server using
express.js

Il Filename - index.js

Il Importing express module
const express = require("express")

const app = express()

// Handling GET / request
app.use("/", (req, res, next) => {
res.send("This is the express server")

)

// Handling GET /hello request
app.get(*'/hello", (req, res, next) => {
res.send("This is the hello response");

)

Il Server setup

app.listen(3000, () => {

console.log("Server is Running")

by,
Run the index.js file using the below command:

node index.js

Output: Now open your browser and go to http://localhost:3000/, you will see the
following output:

& C @ localhost:3000

This 1s the express server

